Periodic driving can tune the quasistatic properties of quantum matter. A well-known example is the dynamical modification of tunneling by an oscillating electric field. Here we show experimentally that driving the phasonic degree of freedom of a cold-atom quasicrystal can continuously tune the effective quasidisorder strength, reversibly toggling a localization-delocalization quantum phase transition.
View Article and Find Full Text PDFPhasonic degrees of freedom are unique to quasiperiodic structures and play a central role in poorly understood properties of quasicrystals from excitation spectra to wave function statistics to electronic transport. However, phasons are challenging to access dynamically in the solid state due to their complex long-range character and the effects of disorder and strain. We report phasonic spectroscopy of a quantum gas in a one-dimensional quasicrystalline optical lattice.
View Article and Find Full Text PDFUltrafast electronic dynamics are typically studied using pulsed lasers. Here we demonstrate a complementary experimental approach: quantum simulation of ultrafast dynamics using trapped ultracold atoms. Counter-intuitively, this technique emulates some of the fastest processes in atomic physics with some of the slowest, leading to a temporal magnification factor of up to 12 orders of magnitude.
View Article and Find Full Text PDF