An organocatalyzed, formal (3+3) cycloaddition reaction is described for the practical synthesis of substituted pyridines. Starting from readily available enamines and enal/ynal/enone substrates, the protocol affords tri- or tetrasubstituted pyridine scaffolds bearing various functional groups. This method was demonstrated on a 50 g scale, enabling the synthesis of 2-isopropyl-4-methylpyridin-3-amine, a raw material used for the manufacture of sotorasib.
View Article and Find Full Text PDFA tandem olefin metathesis/oxidative cyclization has been developed to synthesize 2,5-disubstituted tetrahydrofuran (THF) diols in a stereocontrolled fashion from simple olefin precursors. The ruthenium metathesis catalyst is converted into an oxidation catalyst in the second step and is thus responsible for both catalytic steps. The stereochemistry of the 1,5-diene intermediate can be controlled through the choice of catalyst and the type of metathesis conducted.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
June 2015
A stereoselective synthesis of anti-1,2-diols has been developed using a multitasking Ru catalyst in an assisted tandem catalysis protocol. A cyclometalated Ru complex catalyzes first a Z-selective cross-metathesis of two terminal olefins, followed by a stereospecific dihydroxylation. Both steps are catalyzed by Ru, as the Ru complex is converted to a dihydroxylation catalyst upon addition of NaIO4.
View Article and Find Full Text PDFJ Am Chem Soc
September 2014
The success of enantioselective olefin metathesis relies on the design of enantioenriched alkylidene complexes capable of transferring stereochemical information from the catalyst structure to the reactants. Cyclometalation of the NHC ligand has proven to be a successful strategy to incorporate stereogenic atoms into the catalyst structure. Enantioenriched complexes incorporating this design element catalyze highly Z- and enantioselective asymmetric ring opening/cross metathesis (AROCM) of norbornenes and cyclobutenes, and the difference in ring strain between these two substrates leads to different propagating species in the catalytic cycle.
View Article and Find Full Text PDFA dynamic kinetic resolution (DKR) of allylic sulfoxides has been demonstrated by combining the Mislow [2,3]-sigmatropic rearrangement with catalytic asymmetric hydrogenation. The efficiency of our DKR was optimized by using low pressures of hydrogen gas to decrease the rate of hydrogenation relative to the rate of sigmatropic rearrangement. Kinetic studies reveal that the rhodium complex acts as a dual-role catalyst and accelerates the substrate racemization while catalyzing olefin hydrogenation.
View Article and Find Full Text PDFThis communication describes the first rhodium-catalyzed intramolecular olefin hydroacylation to produce medium-sized heterocyclic ketones with high regio- and enantiocontrol. Both alpha- and beta-substituted ketones can be produced, depending on catalyst choice and substrate structure. In this stereoselective C-H bond functionalization, ethers, sulfides, and sulfoxides function as effective directing groups.
View Article and Find Full Text PDF[Rh((R)-DTBM-SEGPHOS)]BF(4) catalyzes the intramolecular hydroacylation of ketones to afford seven-membered lactones in large enantiomeric excess. Herein, we present a combined experimental and theoretical study to elucidate the mechanism and origin of selectivity in this C-H bond activation process. Evidence is presented for a mechanistic pathway involving three key steps: (1) rhodium(I) oxidative addition into the aldehyde C-H bond, (2) insertion of the ketone CO double bond into the rhodium hydride, and (3) C-O bond-forming reductive elimination.
View Article and Find Full Text PDFA novel method for the cyclotrimerization of dimethylcyanamide to form hexamethylmelamine has been developed using an aluminium amide catalyst; detailed DFT modelling of the catalytic cycle supports a triple insertion, nucleophilic ring closure, deinsertion mechanism.
View Article and Find Full Text PDFNonspherical cages in inclusion compounds can result in non-uniform motion of guest species in these cages and anisotropic lineshapes in NMR spectra of the guest. Herein, we develop a methodology to calculate lineshape anisotropy of guest species in cages based on molecular dynamics simulations of the inclusion compound. The methodology is valid for guest atoms with spin 1/2 nuclei and does not depend on the temperature and type of inclusion compound or guest species studied.
View Article and Find Full Text PDFClassical molecular dynamics simulations are used to compare the stability of methane, carbon dioxide, nitrogen, and mixed CO(2)N(2) structure I (sI) clathrates under deep ocean seafloor temperature and pressure conditions (275 K and 30 MPa) which were considered suitable for CO(2) sequestration. Substitution of methane guests in both the small and large sI cages by CO(2) and N(2) fluids are considered separately to determine the separate contributions to the overall free energy of substitution. The structure I clathrate with methane in small cages and carbon dioxide in large cages is determined to be the most stable.
View Article and Find Full Text PDFUVA irradiation (ca. 350 nm) of a mixture of cyclic enones and nitrogen heterocycles leads to efficient formation of the 1,4-adducts in a variety of solvents, at room temperature. These reactions likely proceed through strained E-cycloalkenone intermediates, as suggested by low-temperature generation/trapping experiments monitored by 1H NMR.
View Article and Find Full Text PDF