Publications by authors named "Peter Doggart"

Background: Multiple smart devices capable of automatically detecting atrial fibrillation (AF) based on single-lead electrocardiograms (SL-ECG) are presently available. The rate of inconclusive tracings by manufacturers' algorithms is currently too high to be clinically useful.

Method: This is a prospective, observational study enrolling patients presenting to a cardiology service at a tertiary referral center.

View Article and Find Full Text PDF

Background: Mobile Cardiac Outpatient Telemetry (MCOT) can be used to screen high risk patients for atrial fibrillation (AF). These devices rely primarily on algorithmic detection of AF events, which are then stored and transmitted to a clinician for review. It is critical the positive predictive value (PPV) of MCOT detected AF is high, and this often leads to reduced sensitivity, as device manufacturers try to limit false positives.

View Article and Find Full Text PDF

Deep Convolutional Neural Networks (DCNNs) have been shown to provide improved performance over traditional heuristic algorithms for the detection of arrhythmias from ambulatory ECG recordings. However, these DCNNs have primarily been trained and tested on device-specific databases with standardized electrode positions and uniform sampling frequencies. This work explores the possibility of training a DCNN for Atrial Fibrillation (AF) detection on a database of single‑lead ECG rhythm strips extracted from resting 12‑lead ECGs.

View Article and Find Full Text PDF