Publications by authors named "Peter Dittrich"

Measuring the dynamics of microbial communities results in high-dimensional measurements of taxa abundances over time and space, which is difficult to analyze due to complex changes in taxonomic compositions. This paper presents a new method to investigate and visualize the intrinsic hierarchical community structure implied by the measurements. The basic idea is to identify significant intersection sets, which can be seen as sub-communities making up the measured communities.

View Article and Find Full Text PDF

An algorithm is presented for computing a reaction-diffusion partial differential equation (PDE) system for all possible subspaces that can hold a persistent solution of the equation. For this, all possible sub-networks of the underlying reaction network that are distributed organizations (DOs) are identified. Recently it has been shown that a persistent subspace must be a DO.

View Article and Find Full Text PDF

It can be expected that medical treatments in the future will be individually tailored for each patient. Here we present a step towards personally addressed drug therapy. We consider multiple myeloma treatment with drugs: bortezomib and dexamethasone.

View Article and Find Full Text PDF

This work provides a mathematical technique for analyzing and comparing infection dynamics models with respect to their potential long-term behavior, resulting in a hierarchy integrating all models. We apply our technique to coupled ordinary and partial differential equation models of SARS-CoV-2 infection dynamics operating on different scales, that is, within a single organism and between several hosts. The structure of a model is assessed by the theory of chemical organizations, not requiring quantitative kinetic information.

View Article and Find Full Text PDF

Many studies report age as a risk factor for BoHV-1 infection or seropositivity. However, it is unclear whether this pattern reflects true epidemiological causation or is a consequence of study design and other issues. Here, we seek to understand the age-related dynamics of BoHV-1 seroprevalence in seasonal calving Irish dairy herds and provide decision support for the design and implementation of effective BoHV-1 testing strategies.

View Article and Find Full Text PDF

Designing novel unconventional computing systems often requires the selection of the computational structure as well as choosing the right symbol encoding. Several approaches apply heuristic search and evolutionary algorithms to find both computational structure and symbol encoding, which is time consuming because they depend on each other. Here, we present a novel approach that combines evolution with self-organization, in particular we evolve the computational structure but let the symbol encoding emerge through self-organization.

View Article and Find Full Text PDF

Influenza A virus is recognized today as one of the most challenging viruses that threatens both human and animal health worldwide. Understanding the control mechanisms of influenza infection and dynamics is crucial and could result in effective future treatment strategies. Many kinetic models based on differential equations have been developed in recent decades to capture viral dynamics within a host.

View Article and Find Full Text PDF

SRSim combines rule-based reaction network models with spatial particle simulations allowing to simulate the dynamics of large molecular complexes changing according to a set of chemical reaction rules. As the rule can contain patterns of molecular complexes and specific states of certain binding sites, a combinatorially complex or even infinitely sized reaction network can be defined. Particles move in a three-dimensional space according to molecular dynamics implemented by LAMMPS, while the BioNetGen language is used to formulate reaction rules.

View Article and Find Full Text PDF

The complexity of biological models makes methods for their analysis and understanding highly desirable. Here, we demonstrate the orchestration of various novel coarse-graining methods by applying them to the mitotic spindle assembly checkpoint. We begin with a detailed fine-grained spatial model in which individual molecules are simulated moving and reacting in a three-dimensional space.

View Article and Find Full Text PDF

Aims: Surgical site infections contribute to morbidity and mortality after surgery. The authors hypothesized that higher antibiotic tissue concentrations can be reached for a prolonged time span by continuous administration of prophylactic cefuroxime compared to bolus administration.

Methods: Twelve patients undergoing elective cardiac surgery were investigated.

View Article and Find Full Text PDF
Article Synopsis
  • Chemical organisation theory simplifies the analysis of chemical systems' long-term behavior and is expanded here with new techniques for quantitative analysis of chemical reaction networks using continuous-time Markov chains.
  • The study introduces methods to identify the structures (or organisations) within these networks and analyze the movement between them.
  • A coarse-grained Markov chain model is developed to approximate the original network's behavior, enabling predictions over time, with experiments showing improved predictive precision through selective refinement of the models.*
View Article and Find Full Text PDF

The organic code concept and its operationalization by molecular codes have been introduced to study the semiotic nature of living systems. This contribution develops further the idea that the semantic capacity of a physical medium can be measured by assessing its ability to implement a code as a contingent mapping. For demonstration and evaluation, the approach is applied to a formal medium: elementary cellular automata (ECA).

View Article and Find Full Text PDF

The spindle assembly checkpoint (SAC) is an evolutionarily conserved mechanism, exclusively sensitive to the states of kinetochores attached to microtubules. During metaphase, the anaphase-promoting complex/cyclosome (APC/C) is inhibited by the SAC but it rapidly switches to its active form following proper attachment of the final spindle. It had been thought that APC/C activity is an all-or-nothing response, but recent findings have demonstrated that it switches steadily.

View Article and Find Full Text PDF

Unconventional computing devices operating on nonlinear chemical media offer an interesting alternative to standard, semiconductor-based computers. In this work we study in-silico a chemical medium composed of communicating droplets that functions as a database classifier. The droplet network can be "programmed" by an externally provided illumination pattern.

View Article and Find Full Text PDF

Molecular dynamics simulations yield large amounts of trajectory data. For their durable storage and accessibility an efficient compression algorithm is paramount. State of the art domain-specific algorithms combine quantization, Huffman encoding and occasionally domain knowledge.

View Article and Find Full Text PDF

Knowledge of metabolic processes is collected in easily accessable online databases which are increasing rapidly in content and detail. Using these databases for the automatic construction of metabolic network models requires high accuracy and consistency. In this bipartite study we evaluate current accuracy and consistency problems using the KEGG database as a prominent example and propose design principles for dealing with such problems.

View Article and Find Full Text PDF

Glucocorticoids are drugs of choice for treatment of laryngotracheitis (croup). They may be administered orally as tablets or juice, locally as inhalation or rectally as suppository or capsule. If doctors decide to use a rectal administration for practical reasons, it is obvious from a pharmacokinetic and pharmacodynamic point of view that prednisolone capsules have an earlier and stronger anti-inflammatory effect than a prednisone suppository.

View Article and Find Full Text PDF

Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes.

View Article and Find Full Text PDF

In this paper, we present general methods that can be used to explore the information processing potential of a medium composed of oscillating (self-exciting) droplets. Networks of Belousov-Zhabotinsky (BZ) droplets seem especially interesting as chemical reaction-diffusion computers because their time evolution is qualitatively similar to neural network activity. Moreover, such networks can be self-generated in microfluidic reactors.

View Article and Find Full Text PDF

Large multi-molecular complexes like the kinetochore are lacking of suitable methods to determine their spatial structure. Here, we use and evaluate a novel modeling approach that combines rule-bases reaction network models with spatial molecular geometries. In particular, we introduce a method that allows to study in silico the influence of single interactions (e.

View Article and Find Full Text PDF

Motivation: The functioning of many biological processes depends on the appearance of only a small number of a single molecular species. Additionally, the observation of molecular crowding leads to the insight that even a high number of copies of species do not guarantee their interaction. How single particles contribute to stabilizing biological systems is not well understood yet.

View Article and Find Full Text PDF

Background: Systems Biology develops computational models in order to understand biological phenomena. The increasing number and complexity of such "bio-models" necessitate computer support for the overall modelling task. Computer-aided modelling has to be based on a formal semantic description of bio-models.

View Article and Find Full Text PDF

Background: Combinatorial complexity is a central problem when modeling biochemical reaction networks, since the association of a few components can give rise to a large variation of protein complexes. Available classical modeling approaches are often insufficient for the analysis of very large and complex networks in detail. Recently, we developed a new rule-based modeling approach that facilitates the analysis of spatial and combinatorially complex problems.

View Article and Find Full Text PDF

Shannon's theory of communication has been very successfully applied for the analysis of biological information. However, the theory neglects semantic and pragmatic aspects and thus cannot directly be applied to distinguish between (bio-) chemical systems able to process "meaningful" information from those that do not. Here, we present a formal method to assess a system's semantic capacity by analyzing a reaction network's capability to implement molecular codes.

View Article and Find Full Text PDF