Publications by authors named "Peter Delfyett"

A light-trapping transparent electrode design based on sub-surface binary dielectric gratings is introduced and demonstrated experimentally. The structure consists of metallic wires patterned with an array of silicon nanobeams. Optimization of the grating geometry achieves selective suppression of zero-order diffraction, while enabling redirection of incident light to an angle that exceeds critical angle of the local environment.

View Article and Find Full Text PDF

We demonstrate an all-semiconductor mode-locked laser system consisting of two external cavity mode-locked lasers operating at wavelengths 834 nm and 974 nm which use semiconductor optical amplifiers as gain media. The two-color laser system emits picosecond pulses with average powers of 25 mW and 60 mW resulting in peak powers exceeding 100 W and 80 W respectively. Synchronized output pulse trains from the lasers with a repetition rate of 282 MHz exhibit a relative timing jitter of 7.

View Article and Find Full Text PDF
Article Synopsis
  • Optical interconnects are emerging as a solution to improve data transfer limits in high-performance silicon chips, focusing on enhancing optical communication through wavelength-division multiplexing.
  • The study presents an integrated communication scheme that combines wavelength- and mode-multiplexing, achieving a significant 1.12-Tb/s data transmission without errors in a silicon nanophotonic waveguide.
  • Additionally, the approach employs inverse-designed couplers for efficient multimode optical transmission between different silicon chips, while ensuring compliance with standard silicon photonic foundry processes, making it scalable beyond current technologies.
View Article and Find Full Text PDF

A novel optical frequency division technique, called regenerative harmonic injection locking, is used to transfer the timing stability of an optical frequency comb with a repetition rate in the millimeter wave range (∼300) to a chip-scale mode-locked laser with a ∼10 repetition rate. By doing so, the 300 GHz optical frequency comb is optically divided by a factor of 30× to 10 GHz. The stability of the mode-locked laser after regenerative harmonic injection locking is ∼10 at 1 s with a 1/ trend.

View Article and Find Full Text PDF

An optical buffer featuring a large delay-bandwidth-product-a critical component for future all-optical communications networks-remains elusive. Central to its realization is a controllable inline optical delay line, previously accomplished via engineered dispersion in optical materials or photonic structures constrained by a low delay-bandwidth product. Here we show that space-time wave packets whose group velocity is continuously tunable in free space provide a versatile platform for constructing inline optical delay lines.

View Article and Find Full Text PDF

Miniaturization of frequency-comb sources could open a host of potential applications in spectroscopy, biomedical monitoring, astronomy, microwave signal generation, and distribution of precise time or frequency across networks. This review article places emphasis on an architecture with a semiconductor mode-locked laser at the heart of the system and subsequent supercontinuum generation and carrier-envelope offset detection and stabilization in nonlinear integrated optics.

View Article and Find Full Text PDF

We report a study on the performance limits of stabilized optical frequency combs from semiconductor mode-locked diode lasers. Operating characteristics such as the number of comb lines, comb tooth linewidth, the physical parameters that affect the independent control of pulse repetition rate and offset frequency, and the potential for self-stabilization, are explored.

View Article and Find Full Text PDF

An optical frequency comb with mode spacing of 10 GHz operating in the c-band is produced from a harmonically mode-locked laser using a slab-coupled optical waveguide amplifier device with a fiber-coupled external cavity. An intracavity Fabry-Perot etalon serves as a high finesse optical filter for supermode suppression and as the reference for cavity length stabilization using a multi-combline Pound-Drever-Hall setup. The Allan deviation of a single optical combline near 193.

View Article and Find Full Text PDF

Second-order optical nonlinear effects (second-harmonic and sum-frequency generation) are demonstrated in the telecommunication band by periodic poling of thin films of lithium niobate wafer-bonded on silicon substrates and rib-loaded with silicon nitride channels to attain ridge waveguide with cross-sections of ~2 µm. A nonlinear conversion of 8% is obtained with a pulsed input in 4 mm long waveguides. The choice of silicon substrate makes the platform potentially compatible with silicon photonics, and therefore may pave the path towards on-chip nonlinear and quantum-optic applications.

View Article and Find Full Text PDF

A linearized intensity modulator for periodic and pulsed light is proposed and demonstrated. The free carrier plasma effect has been used to modulate the refractive index of the phase section of a three-section mode-locked laser. If injection locked, the modulation induces an arcsine phase response on the three-section mode-locked laser.

View Article and Find Full Text PDF

An optical frequency comb is constructed using a semiconductor gain medium with a fiber-coupled external cavity and stabilized to an intracavity 10,000 finesse etalon, which is temperature stabilized and held in a vacuum chamber at 10(-6)  Torr. Optical frequency stability measurements show that the comb has a reduced sensitivity to environmental fluctuations. An upper limit on the optical frequency variation of 100 kHz over >12  min of continuous operation is measured using a real-time spectrum analyzer.

View Article and Find Full Text PDF

A fiber-based chirped-pulse amplification (CPA) system with an active feedback loop for pulse shaping is experimentally demonstrated. A spectral processor is used in conjunction with a frequency-resolved optical gating measurement to produce high-quality pulses. Spectral phase and intensity shaping are utilized to generate a clean, high-contrast, transform-limited pulse with 15 dB pedestal suppression in the pulse wing tails, resulting in a five time increase in peak power of the CPA system.

View Article and Find Full Text PDF

We report on infrared supercontinuum generation extending over more than one octave of bandwidth, from 850 nm to 2.35 μm, produced in a single spatial mode from a robust, compact, composite chalcogenide glass nanotaper. A picosecond laser at 1.

View Article and Find Full Text PDF

We report a novel quantum dot based laser design where a stable high-Q master laser is used to injection lock a passively mode-locked monolithic colliding pulse slave laser. Coupling between the crossed orthogonal laser cavities is achieved through a common monolithically integrated saturable absorber, which results in the locking and hence reduction of the timing jitter as well as the long-term frequency drift of the slave laser. A stable 30 GHz optical pulse train is generated with more than 10 dB reduction in the RF noise level at 20 MHz offset and close to 3 times reduction in the 10 dB average optical linewidth of the slave laser.

View Article and Find Full Text PDF

Self-phase modulation in fiber amplifiers can significantly degrade the quality of compressed pulses in chirped pulse amplification systems. Parabolic pulses with linear frequency chirp are suitable for suppressing nonlinearities, and to achieve high peak power pulses after compression. In this paper, we present an active time domain technique to generate parabolic pulses for chirped pulse amplification applications.

View Article and Find Full Text PDF

A lidar system based on the coherent detection of oppositely chirped pulses generated using a 20 MHz mode locked laser and chirped fiber Bragg gratings is presented. Sub millimeter resolution ranging is performed with > 25 dB signal to noise ratio. Simultaneous, range and Doppler velocity measurements are experimentally demonstrated using a target moving at > 330 km/h inside the laboratory.

View Article and Find Full Text PDF

This work presents an extensive investigation of the performance characteristics of a semiconductor-based Theta cavity design laser with an intra-cavity Fabry-Pérot etalon operating at 100 MHz repetition rate. The Theta laser being an external cavity harmonically mode-locked semiconductor laser exhibits supermode noise that impairs its performance. A fiberized Fabry-Pérot periodic filter inserted within the Theta laser cavity mitigates the contribution of the supermode noise to the pulse-to-pulse energy variance by 20 times.

View Article and Find Full Text PDF

We report the fabrication of a saturable absorber based on SU8 single wall carbon nanotube (SWCNT) composite material. Thin films with a controllable thickness can be fabricated using a simple and reliable process. These films can be inserted between two FC/APC connectors in order to have an inline saturable absorber.

View Article and Find Full Text PDF

We demonstrate line-by-line pulse shaping of optical comb lines separated by 6.25 GHz. An array of injection-locked VCSELs independently modulate four optical comb lines at frequencies up to 3.

View Article and Find Full Text PDF

We report a frequency-stabilized semiconductor-based mode-locked laser that uses a phase modulator and an intracavity Fabry-Perot etalon for both active mode-locking and optical frequency stabilization. A twofold multiplication of the repetition frequency of the laser is inherently obtained in the process. The residual timing jitter of the mode-locked pulse train is 13 fs (1 Hz to 100 MHz), measured after regenerative frequency division of the photodetected pulse train.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on utilizing a narrow linewidth 1 kHz laser to measure the free spectral range of a fiberized Fabry-Perot etalon with exceptional accuracy (sub-Hz, or 10^(-8)).
  • The technique improves upon the Pound-Drever-Hall error signal method by employing a frequency-swept narrow linewidth laser using an acousto-optic modulator.
  • This enhanced accuracy allows for detailed analysis of the long-term drift and polarization dependence of the fiberized etalon's free spectral range.
View Article and Find Full Text PDF

A semiconductor-based mode-locked laser source with low repetition rate, ultralow amplitude, and phase noise is introduced. A harmonically mode-locked semiconductor-based ring laser is time demultiplexed at a frequency equal to the cavity fundamental frequency (80MHz), resulting in a low repetition rate pulse train having ultralow amplitude and phase noise, properties usually attributed to multigigahertz repetition rate lasers. The effect of time demultiplexing on the phase noise of harmonically mode-locked lasers is analyzed and experimentally verified.

View Article and Find Full Text PDF

We propose an intensity modulator based on injection locking of a resonant cavity with gain that has a linear transfer function, multigigahertz bandwidth, possible optical gain, and very low V(pi). The arcsine phase response of the injection-locked resonant cavity placed in one arm of a Mach-Zehnder interferometer is the key to the true linear performance of this modulator. The first (to our knowledge) demonstration of this modulator with 5 GHz bandwidth, V(pi) of approximately 2.

View Article and Find Full Text PDF

A lidar technique employing temporally stretched, frequency chirped pulses from a 20 MHz mode locked laser is presented. Sub-millimeter resolution at a target range of 10.1 km (in fiber) is observed.

View Article and Find Full Text PDF

A 10.287 GHz optoelectronic oscillator is experimentally demonstrated that uses a 1000 finesse Fabry-Perot etalon as the mode selector instead of an rf filter. The results are compared with a standard optoelectronic loop with an rf filter.

View Article and Find Full Text PDF