Publications by authors named "Peter David Matthews"

Background: The mutational landscape of SARS-CoV-2 varies at the dominant viral genome sequence and minor genomic variant population. During the COVID-19 pandemic, an early substitution in the genome was the D614G change in the spike protein, associated with an increase in transmissibility. Genomes with D614G are accompanied by a P323L substitution in the viral polymerase (NSP12).

View Article and Find Full Text PDF

Aims: Given the benefits of sodium glucose co-transporter 2 inhibition (SGLT2i) in protecting against heart failure in diabetic patients, we sought to explore the potential impact of SGLT2i on the clinical features of patients presenting with myocardial infarction (MI) through a post hoc analysis of CANVAS Programme and CREDENCE trial.

Methods And Results: Individuals with type 2 diabetes and history or high risk of cardiovascular disease (CANVAS Programme) or type 2 diabetes and chronic kidney disease (CREDENCE) were included. The intervention was canagliflozin 100 or 300 mg (combined in the analysis) or placebo.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). Sequencing the viral genome as the outbreak progresses is important, particularly in the identification of emerging isolates with different pathogenic potential and to identify whether nucleotide changes in the genome will impair clinical diagnostic tools such as real-time PCR assays. Although single nucleotide polymorphisms and point mutations occur during the replication of coronaviruses, one of the biggest drivers in genetic change is recombination.

View Article and Find Full Text PDF

Background: Chronic cluster headache is the most disabling form of cluster headache. The mainstay of treatment is attack prevention, but the available management options have little efficacy and are associated with substantial side-effects. In this study, we aimed to assess the safety and efficacy of sphenopalatine ganglion stimulation for treatment of chronic cluster headache.

View Article and Find Full Text PDF

To further understanding of the genetic basis of type 2 diabetes (T2D) susceptibility, we aggregated published meta-analyses of genome-wide association studies (GWAS), including 26,488 cases and 83,964 controls of European, east Asian, south Asian and Mexican and Mexican American ancestry. We observed a significant excess in the directional consistency of T2D risk alleles across ancestry groups, even at SNPs demonstrating only weak evidence of association. By following up the strongest signals of association from the trans-ethnic meta-analysis in an additional 21,491 cases and 55,647 controls of European ancestry, we identified seven new T2D susceptibility loci.

View Article and Find Full Text PDF

Background: Hydrocortisone therapy is based on a dosing regimen derived from estimates of cortisol secretion, but little is known of how the dose should be distributed throughout the 24 h. We have used deconvolution analysis of 24-h serum cortisol profiles to determine 24-h cortisol secretion and distribution to inform hydrocortisone dosing schedules in young children and older adults.

Methods: Twenty four hour serum cortisol profiles from 80 adults (41 men, aged 60-74 years) and 29 children (24 boys, aged 5-9 years) were subject to deconvolution analysis using an 80-min half-life to ascertain total cortisol secretion and distribution throughout the 24-h period.

View Article and Find Full Text PDF

The optimization of the pharmacokinetic performance of various 2-pyridone-containing human rhinovirus (HRV) 3C protease (3CP) inhibitors following oral administration to either beagle dogs or CM-monkeys is described. The molecules described in this work are composed of a 2-pyridone-containing peptidomimetic binding determinant and an alpha,beta-unsaturated ester Michael acceptor moiety which forms an irreversible covalent adduct with the active site cysteine residue of the 3C enzyme. Modification of the ester contained within these compounds is detailed along with alteration of the P(2) substituent present in the peptidomimetic portion of the inhibitors.

View Article and Find Full Text PDF

The structure-based design, chemical synthesis, and biological evaluation of various 2-pyridone-containing human rhinovirus (HRV) 3C protease (3CP) inhibitors are described. These compounds are comprised of a peptidomimetic binding determinant and a Michael acceptor moiety, which forms an irreversible covalent adduct with the active site cysteine residue of the 3C enzyme. The 2-pyridone-containing inhibitors typically display improved 3CP inhibition properties relative to related peptide-derived molecules along with more favorable antiviral properties.

View Article and Find Full Text PDF

The structure-based design, chemical synthesis, and biological evaluation of bicyclic 2-pyridone-containing human rhinovirus (HRV) 3C protease (3CP) inhibitors are described. An optimized compound is shown to exhibit antiviral activity when tested against a variety of HRV serotypes (EC(50)'s ranging from 0.037 to 0.

View Article and Find Full Text PDF