Opsin photoreceptors outside of the central nervous system have been shown to mediate smooth muscle photorelaxation in several organs. We hypothesized that opsin receptor activation in the colon would have a similar effect and influence colonic motility. We detected Opsin 3 (OPN3) protein expression in the colonic wall and demonstrated that OPN3 was present in enteric neurons in the muscularis propria of the murine colon.
View Article and Find Full Text PDFFunctional gastrointestinal disorders (FGIDs) have prominent sex differences in incidence, symptoms, and treatment response that are not well understood. Androgens are steroid hormones present at much higher levels in males than females and could be involved in these differences. In adults with irritable bowel syndrome (IBS), a FGID that affects 5% to 10% of the population worldwide, we found that free testosterone levels were lower than those in healthy controls and inversely correlated with symptom severity.
View Article and Find Full Text PDFA significant number of patients with coronavirus disease 2019 develop strokes with large vessel obstructions that may require endovascular treatment for revascularization. Our series focuses on periprocedural issues and the anesthetic management of these patients. We analyzed medical records of 5 patients with positive reverse transcription polymerase chain reaction tests for severe acute respiratory syndrome coronavirus 2 during their hospitalization who underwent endovascular treatment at our hospital between March and mid-June 2020.
View Article and Find Full Text PDFBackground: Currently available tocolytic agents are not effective treatment for preterm labor beyond 48 h. A major reason is the development of maternal side effects which preclude the maintenance of an effective steady-state drug concentration. One strategy that can mitigate these side effects is utilizing synergistic drug combinations to reduce the drug concentrations necessary to elicit a clinical effect.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
January 2021
Recently, we characterized blue light-mediated relaxation (photorelaxation) of airway smooth muscle (ASM) and implicated the involvement of opsin 3 (OPN3), an atypical opsin. In the present study, we characterized the cellular signaling mechanisms of photorelaxation. We confirmed the functional role of OPN3 in blue light photorelaxation using trachea from OPN3 null mice (maximal relaxation 52 ± 13% compared with wild-type mice 90 ± 4.
View Article and Find Full Text PDFThe Langendorff-perfused model is a powerful tool to study biological responses in the isolated heart in the absence of confounders. The model has been adapted recently to enable study of the isolated mouse heart and the effects of genetic manipulation. Unfortunately, the small size and fragility of the mouse heart pose significant challenges, limiting application of the Langendorff model to the study of adult mice.
View Article and Find Full Text PDFThis article was updated to correct Joy Y. Vink's name in the author listing.
View Article and Find Full Text PDFBackground: COVID-19 infections have been shown to be associated with a range of thromboembolic disease.
Objective: To describe our endovascular experience in a consecutive series of patients with COVID-19 who presented with large vessel occlusions, and to describe unique findings in this population.
Methods: Mechanical thrombectomy was performed on five consecutive patients with COVID-19 with large vessel occlusions.
Spontaneous preterm birth (sPTB) remains a worldwide healthcare challenge. Preterm labor (PTL) is thought to be the largest reversible cause of sPTB, but current tocolytic therapies are ineffective and associated with systemic side effects from chronic use. Therefore, identifying novel mechanisms that promote human uterine smooth muscle (hUSM) relaxation is essential to improving clinical management of PTL.
View Article and Find Full Text PDFThe clinical administration of GABAergic medications leads to hypotension which has classically been attributed to the modulation of neuronal activity in the central and peripheral nervous systems. However, certain types of peripheral smooth muscle cells have been shown to express GABAA receptors, which modulate smooth muscle tone, by the activation of these chloride channels on smooth muscle cell plasma membranes. Limited prior studies demonstrate that non-human large-caliber capacitance blood vessels mounted on a wire myograph are responsive to GABAA ligands.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2019
Nonvisual opsin (OPN) receptors have recently been implicated in blue light-mediated photorelaxation of smooth muscle in various organs. Since photorelaxation has not yet been demonstrated in airway smooth muscle (ASM) or in human tissues, we questioned whether functional OPN receptors are expressed in mouse and human ASM. mRNA, encoding the OPN 3 receptor, was detected in both human and mouse ASM.
View Article and Find Full Text PDFIntroduction: γ-amino butyric acid (GABA) is not only the major inhibitory neurotransmitter in the central nervous system (CNS), but it also plays an important role in the lung, mediating airway smooth muscle relaxation and mucus production. As kinases such as protein kinase A (PKA) are known to regulate the release and reuptake of GABA in the CNS by GABA transporters, we hypothesized that β-agonists would affect GABA release from airway epithelial cells through activation of PKA.
Methods: C57/BL6 mice received a pretreatment of a β-agonist or vehicle (PBS), followed by methacholine or PBS.
Am J Physiol Lung Cell Mol Physiol
May 2015
The clinical need for novel bronchodilators for the treatment of bronchoconstrictive diseases remains a major medical issue. Modulation of airway smooth muscle (ASM) chloride via GABAA receptor activation to achieve relaxation of precontracted ASM represents a potentially beneficial therapeutic option. Since human ASM GABAA receptors express only the α4- and α5-subunits, there is an opportunity to selectively target ASM GABAA receptors to improve drug efficacy and minimize side effects.
View Article and Find Full Text PDFEnhanced airway smooth muscle (ASM) contraction is an important component in the pathophysiology of asthma. We have shown that ligand gated chloride channels modulate ASM contractile tone during the maintenance phase of an induced contraction, however the role of chloride flux in depolarization-induced contraction remains incompletely understood. To better understand the role of chloride flux under these conditions, muscle force (human ASM, guinea pig ASM), peripheral small airway luminal area (rat ASM) and airway smooth muscle plasma membrane electrical potentials (human cultured ASM) were measured.
View Article and Find Full Text PDFBronchodilators are the first line therapy during acute asthmatic exacerbations to reverse airway obstruction primarily by relaxing airway smooth muscle. Only three categories of bronchodilators exist in clinical practice: β-adrenergic agonists, anticholinergics, and methylxanthines. Each of these categories have specific drugs dating back to the early 20th century, raising the question of whether or not we can find better bronchodilators.
View Article and Find Full Text PDFEnsemble recording and microfluidic perfusion are recently introduced techniques aimed at removing the laborious nature and low recording success rates of manual patch clamp. Here, we present assay characteristics for these features integrated into one automated electrophysiology platform as applied to the study of GABA(A) channels. A variety of cell types and methods of GABA(A) channel expression were successfully studied (defined as I(GABA)>500 pA), including stably transfected human embryonic kidney (HEK) cells expressing α(1)β(3)γ(2) GABA(A) channels, frozen ready-to-assay (RTA) HEK cells expressing α(1)β(3)γ(2) or α(3)β(3)γ(2) GABA(A) channels, transiently transfected HEK293T cells expressing α(1)β(3)γ(2) GABA(A) channels, and immortalized cultures of human airway smooth muscle cells endogenously expressing GABA(A) channels.
View Article and Find Full Text PDFAirway smooth muscle (ASM) contraction is an important component of the pathophysiology of asthma. Taurine, an agonist of glycine receptor chloride (GlyR Cl(-)) channels, was found to relax contracted ASM, which led us to question whether functional GlyR Cl(-) channels are expressed in ASM. Messenger RNA for β (GLRB), α1 (GLRA1), α2 (GLRA2), and α4 (GLRA4) subunits were found in human (Homo sapiens) and guinea pig (Cavia porcellus) tracheal smooth muscle.
View Article and Find Full Text PDFγ-Amino butyric acid (GABA) is a primary inhibitory neurotransmitter in the central nervous system, and is classically released by fusion of synaptic vesicles with the plasma membrane or by egress via GABA transporters (GATs). Recently, a GABAergic system comprised of GABA(A) and GABA(B) receptors has been identified on airway epithelial and smooth muscle cells that regulate mucus secretion and contractile tone of airway smooth muscle (ASM). In addition, the enzyme that synthesizes GABA, glutamic acid decarboxylase, has been identified in airway epithelial cells; however, the mechanism(s) by which this synthesized GABA is released from epithelial intracellular stores is unknown.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
June 2007
Tumor necrosis factor (TNF)-alpha is a potent inflammatory cytokine implicated in the exacerbation of asthma. Chronic exposure to TNF-alpha has been reported to induce G protein-coupled receptor desensitization, but adenylyl cyclase sensitization, in airway smooth muscle cells by an unknown mechanism. Cyclic AMP, which is synthesized by adenylyl cyclases in response to G protein-coupled receptor signals, is an important second messenger involved in the regulation of the airway muscle proliferation, migration, and tone.
View Article and Find Full Text PDF