Introduction: Atrial Septal Defect/Patent Foramen Ovale (ASD/PFO) occlusion is performed to prevent paradoxical embolism and reduce the risk of recurrent ischemic stroke. Left atrial appendage (LAA) closure is used as an alternative to medical therapy of non-valvular atrial fibrillation for prevention of stroke. Multiple studies have examined performing LAA and ASD/PFO occlusion.
View Article and Find Full Text PDFMelanoma brain metastasis (MBM) frequently occurs in patients with advanced melanoma; yet, our understanding of the underlying salient biology is rudimentary. Here, we performed single-cell/nucleus RNA-seq in 22 treatment-naive MBMs and 10 extracranial melanoma metastases (ECMs) and matched spatial single-cell transcriptomics and T cell receptor (TCR)-seq. Cancer cells from MBM were more chromosomally unstable, adopted a neuronal-like cell state, and enriched for spatially variably expressed metabolic pathways.
View Article and Find Full Text PDFSuppression of the host innate immune response is a critical aspect of viral replication. Upon infection, viruses may introduce one or more proteins that inhibit key immune pathways, such as the type I interferon pathway. However, the ability to predict and evaluate viral protein bioactivity on targeted pathways remains challenging and is typically done on a single-virus or -gene basis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2021
Mitotic errors can activate cyclic GMP-AMP synthase (cGAS) and induce type I interferon (IFN) signaling. Current models propose that chromosome segregation errors generate micronuclei whose rupture activates cGAS. We used a panel of antimitotic drugs to perturb mitosis in human fibroblasts and measured abnormal nuclear morphologies, cGAS localization, and IFN signaling in the subsequent interphase.
View Article and Find Full Text PDFInterleukin-12 (IL-12) has emerged as an attractive cytokine for cancer therapy because it has direct anti-cancer effects and additionally plays a critical role in enhancing checkpoint inhibitors. Given these multiple modes of actions, identifying means to pharmacologically induce IL-12 production in the tumor microenvironment has become important. In this review, we highlight therapeutics that promote IL-12 induction in tumor-associated myeloid cells through the non-canonical NFkB pathway.
View Article and Find Full Text PDFMultiple potent covalent inhibitors for mutant KRAS G12C have been described and some are in clinical trials. These small molecule inhibitors potentially allow for companion imaging probe development, thereby expanding the chemical biology toolkit to investigate mutant KRAS biology. Herein, we synthesized and tested a series of fluorescent companion imaging drugs (CID) for KRAS G12C, using two scaffolds, ARS-1323 and AMG-510.
View Article and Find Full Text PDFA Correction to this paper has been published: https://doi.org/10.1038/s42255-021-00397-5.
View Article and Find Full Text PDFColchicine has served as a traditional medicine for millennia and remains widely used to treat inflammatory and other disorders. Colchicine binds tubulin and depolymerizes microtubules, but it remains unclear how this mechanism blocks myeloid cell recruitment to inflamed tissues. Here we show that colchicine inhibits myeloid cell activation via an indirect mechanism involving the release of hepatokines.
View Article and Find Full Text PDFEpilepsy-associated brain tumors (EATs) are usually slow-growing, with seizures as the primary and most dominant symptom. BRAF (v-raf murine sarcoma viral oncogene homolog B1) gene mutations have been found in several subsets of EATs; the V600E mutation is currently believed to contribute to the intrinsic epileptogenicity and tumor growth. However, the relationship between BRAF V600E gene mutation and clinical characteristics in EAT patients is not clear.
View Article and Find Full Text PDFImmune-checkpoint blockers can promote sustained clinical responses in a subset of cancer patients. Recent research has shown that a subpopulation of tumor-infiltrating dendritic cells functions as gatekeepers, sensitizing tumors to anti-PD-1 treatment via production of interleukin-12 (IL-12). Hypothesizing that myeloid cell-targeted nanomaterials could be used to deliver small-molecule IL-12 inducers, we performed high-content image-based screening to identify the most efficacious small-molecule compounds.
View Article and Find Full Text PDFThe receptor tyrosine kinase inhibitor, Tie2, has significant roles in endothelial signaling and angiogenesis and is relevant in the pathophysiology of several diseases. However, there are relatively few small molecule probes available to study Tie2, making the evaluation of its activity difficult. Recently, it was discovered that the small molecule rebastinib (DCC-2036) is a potent Tie2 inhibitor.
View Article and Find Full Text PDFMyeloid derived macrophages play a key role in many human diseases, and their therapeutic modulation via pharmacological means is receiving considerable attention. Of particular interest is the fact that these cells are i) dynamic phenotypes well suited to therapeutic manipulation and ii) phagocytic, allowing them to be efficiently targeted with nanoformulations. However, it is important to consider that macrophages represent heterogeneous populations of subtypes with often competing biological behaviors and functions.
View Article and Find Full Text PDFWe screened a library of bioactive small molecules for activators and inhibitors of innate immune signaling through IRF3 and NFkB pathways with the goals of advancing pathway understanding and discovering probes for immunology research. We used high content screening to measure the translocation from the cytoplasm to nucleus of IRF3 and NFkB in primary human macrophages; these transcription factors play a critical role in the activation of STING and other pro-inflammatory pathways. Our pathway activator screen yielded a diverse set of hits that promoted nuclear translocation of IRF3 and/or NFkB, but the majority of these compounds did not cause activation of downstream pathways.
View Article and Find Full Text PDFHydrophobic thickness mismatch between integral membrane proteins and the surrounding lipid bilayer can produce lipid bilayer thickness deformations. Experiment and theory have shown that protein-induced lipid bilayer thickness deformations can yield energetically favorable bilayer-mediated interactions between integral membrane proteins, and large-scale organization of integral membrane proteins into protein clusters in cell membranes. Within the continuum elasticity theory of membranes, the energy cost of protein-induced bilayer thickness deformations can be captured by considering compression and expansion of the bilayer hydrophobic core, membrane tension, and bilayer bending, resulting in biharmonic equilibrium equations describing the shape of lipid bilayers for a given set of bilayer-protein boundary conditions.
View Article and Find Full Text PDFExperiments have revealed that membrane proteins can form two-dimensional clusters with regular translational and orientational protein arrangements, which may allow cells to modulate protein function. However, the physical mechanisms yielding supramolecular organization and collective function of membrane proteins remain largely unknown. Here we show that bilayer-mediated elastic interactions between membrane proteins can yield regular and distinctive lattice architectures of protein clusters, and may provide a link between lattice architecture and lattice function.
View Article and Find Full Text PDFRecent advances in the field of intravital imaging have for the first time allowed us to conduct pharmacokinetic and pharmacodynamic studies at the single cell level in live animal models. Due to these advances, there is now a critical need for automated analysis of pharmacokinetic data. To address this, we began by surveying common thresholding methods to determine which would be most appropriate for identifying fluorescently labeled drugs in intravital imaging.
View Article and Find Full Text PDFTooth infections or injuries involving dental pulp are treated routinely by root canal therapy. Endodontically treated teeth are devitalized, susceptible to re-infections, fractures, and subsequent tooth loss. Here, we report regeneration of dental-pulp-like tissue by cell homing and without cell transplantation.
View Article and Find Full Text PDF