Publications by authors named "Peter D Hansen"

Background, Aim, And Scope: The enzyme-linked receptor assay (ELRA) detects estrogenic and anti-estrogenic effects at the molecular level of receptor binding and is a useful tool for the integrative assessment of ecotoxicological potentials caused by hormonally active agents (HAA) and endocrine disrupting compounds (EDC). The main advantage of the ELRA is its high sample throughput and its robustness against cytotoxicity and microbial contamination. After a methodological adaptation to salinity of the ELRA, according to the first part of this study, which increased its salinity tolerance and sensitivity for 17-beta-estradiol, the optimised ELRA was used to investigate 13 native sediments characterised by different levels of salinity and chemical contamination.

View Article and Find Full Text PDF

An inter-laboratory comparison exercise was conducted under the European Union funded project entitled: Screening Methods for Water Data Information in Support of the Implementation of the Water Framework Directive (SWIFT-WFD) and coordinated by the Consejo Superior de Investigaciones Científicas (CSIC), in order to evaluate the reproducibility of different toxicity tests based on the bioluminescence inhibition of Vibrio fischeri, for the rapid water toxicity assessment. For the first time, this type of exercise has been organized in Europe, and using different tests based on the same principle. In this exercise, 10 laboratories from 8 countries (Austria, Cyprus, Germany, Greece, Italy, Portugal, Romania, and Spain) took place, and a total number of 360 samples were distributed.

View Article and Find Full Text PDF

Goal, Scope And Background: Exogenic endocrine-active substances are also called 'Endocrine Disrupting Chemicals' (EDC). They imitate or hinder the function of natural endogenic hormones or disturb the synthesis or the metabolism of hormones or of hormone receptors. The Enzyme-Linked Receptor Assay (ELRA) can detect estrogenic and anti-estrogenic effects at the level of receptor binding and is a useful tool for the integrative detection of contaminant effects.

View Article and Find Full Text PDF

Presented here, based on new recommendations of the European Commission, is an environmental risk assessment (ERA) of a selected group of pharmaceuticals for Phase I, environmental exposure assessment, and Phase II Tier A, initial environmental fate and effect analysis. This pharmaceutical group is composed of the 111 highest-selling human drug substances that have annual sales in Germany of more than 5,000 kg. The data required for this ERA came from analyzing: (1) sales annually (in kg or IU) of the 2671 active pharmaceutical drug substances (2001) on the German market in all medicinal products sold by pharmacies (with and without prescriptions) and used in hospitals in 1996-2001; (2) the use pattern of drug substances as categorized according to Anatomical Therapeutic Chemical (ATC) classification indexes ATC3 and ATC7; (3) data for excretion, toxicity, and metabolites of the 111 selected human drug substances; (4) the physicochemical properties of these substances; and (5) the degradability of selected drug substances in sewage treatment plants (STPs) by using a validated and accredited liquid chromatography-electrospray ionization tandem mass spectrometry method.

View Article and Find Full Text PDF

Several experiments were conducted to evaluate the behavior and performance of some potential endocrine disrupters (ECDs). Two in vitro screening assays, one based on MCF7-cell proliferation (E-screen test) and the other on estrogenic receptor activity [enzyme-linked receptor assay (ELRA)], were used for the tests, which were done in lysimeters 80 cm in diameter with depth of 30 cm (shallow) or 90 cm (deep). A sandy soil was used to fill in all lysimeters, which were spiked on the surface with either: (a) a sewage sludge (SS) at a dose equivalent to 20 tons ha-1; (b) a mixture of reference ECDs, comprising 17 alpha- and 17 beta-estradiol (E2), nonylphenol, octylphenol, and bisphenol A at doses 100 times higher than the maximum concentrations respectively found in the applied SS; or (c) a mixture of ECDs and SS.

View Article and Find Full Text PDF

An in vitro cytotoxicity assay with fish cell lines was established in order to reduce the number of animals used in fish tests with the golden orfe (leuciscus idus melanotus). In three co-ordinated working laboratories the toxicity of seven chemicals was determined according to a standardized protocol using the permanent cell lines D11 and RTG-2. There was an almost linear correlation (r=0.

View Article and Find Full Text PDF