Publications by authors named "Peter D Blanken"

Robust, accurate, and direct measurements of evaporation and related energy fluxes on the Laurentian Great Lakes are necessary to understand the large historical range in water levels, regional climatology, lake hydrodynamics, and lake-effect snowfall, all of which inform water management. Despite the societal and scientific importance of this information, few long-term, full-year, in situ measurements exist due to logistical, financial, and safety-related challenges. We present 15 years (2008-2022) of eddy covariance data from Stannard Rock, a historic lighthouse on Lake Superior located 38 km southeast of Manitou Island and 72 km north of Marquette, Michigan.

View Article and Find Full Text PDF

Insect outbreaks affect forest structure and function and represent a major category of forest disturbance globally. However, the resulting impacts on evapotranspiration (ET), and especially hydrological partitioning between the abiotic (evaporation) and biotic (transpiration) components of total ET, are not well constrained. As a result, we combined remote sensing, eddy covariance, and hydrological modeling approaches to determine the effects of bark beetle outbreak on ET and its partitioning at multiple scales throughout the Southern Rocky Mountain Ecoregion (SRME), USA.

View Article and Find Full Text PDF
Article Synopsis
  • High-latitude surface energy budgets (SEBs) are important for understanding land-climate interactions in the Arctic, but uncertainties in their predictions remain.
  • A study analyzed SEB observations from 1994 to 2021 and found that vegetation type is a key predictor of SEB components during Arctic summers, often matching or exceeding differences seen between vegetation and glacier surfaces.
  • The study also revealed that the timing of SEB fluxes varies significantly with vegetation type, affecting snow-cover dynamics and suggesting that better representations of Arctic vegetation in models could enhance future Earth system predictions.
View Article and Find Full Text PDF

The leaf economics spectrum and the global spectrum of plant forms and functions revealed fundamental axes of variation in plant traits, which represent different ecological strategies that are shaped by the evolutionary development of plant species. Ecosystem functions depend on environmental conditions and the traits of species that comprise the ecological communities. However, the axes of variation of ecosystem functions are largely unknown, which limits our understanding of how ecosystems respond as a whole to anthropogenic drivers, climate and environmental variability.

View Article and Find Full Text PDF

Ecosystem respiration is a major component of the global terrestrial carbon cycle and is strongly influenced by temperature. The global extent of the temperature-ecosystem respiration relationship, however, has not been fully explored. Here, we test linear and threshold models of ecosystem respiration across 210 globally distributed eddy covariance sites over an extensive temperature range.

View Article and Find Full Text PDF

Evergreen conifer forests are the most prevalent land cover type in North America. Seasonal changes in the color of evergreen forest canopies have been documented with near-surface remote sensing, but the physiological mechanisms underlying these changes, and the implications for photosynthetic uptake, have not been fully elucidated. Here, we integrate on-the-ground phenological observations, leaf-level physiological measurements, near surface hyperspectral remote sensing and digital camera imagery, tower-based CO flux measurements, and a predictive model to simulate seasonal canopy color dynamics.

View Article and Find Full Text PDF
Article Synopsis
  • - The study compares three methods for estimating ecosystem transpiration from eddy covariance data across 251 FLUXNET sites worldwide, highlighting their high correlation (R between .89 and .94) despite differing in magnitude (T/ET ranging from 45% to 77%).
  • - The analysis shows that the estimated transpiration is more closely related to sap flow measurements than to other evapotranspiration estimates and that the transpiration-to-evapotranspiration ratio tends to increase with factors like drought conditions and leaf area index.
  • - Findings reveal that the main drivers of spatial variability in the transpiration-to-evapotranspiration ratio are vegetation and soil characteristics rather than climate, marking a significant improvement in understanding ecosystem transp
View Article and Find Full Text PDF

High-elevation montane forests are disproportionately important to carbon sequestration in semiarid climates where low elevations are dry and characterized by low carbon density ecosystems. However, these ecosystems are increasingly threatened by climate change with seasonal implications for photosynthesis and forest growth. As a result, we leveraged eddy covariance data from six evergreen conifer forest sites in the semiarid western United States to extrapolate the status of carbon sequestration within a framework of projected warming and drying.

View Article and Find Full Text PDF
Article Synopsis
  • - The FLUXNET2015 dataset encompasses ecosystem-scale data on carbon dioxide, water, and energy exchange, collected from 212 global sites contributing over 1500 site-years of data until 2014.
  • - The dataset was systematically quality controlled and processed, facilitating consistency for various applications in ecophysiology, remote sensing, and ecosystem modeling.
  • - For the first time, derived data products such as time series, ecosystem respiration, and photosynthesis estimates are included, and 206 sites are made accessible under a Creative Commons license, with the processing methods available as open-source codes.
View Article and Find Full Text PDF

Northern hemisphere evergreen forests assimilate a significant fraction of global atmospheric CO but monitoring large-scale changes in gross primary production (GPP) in these systems is challenging. Recent advances in remote sensing allow the detection of solar-induced chlorophyll fluorescence (SIF) emission from vegetation, which has been empirically linked to GPP at large spatial scales. This is particularly important in evergreen forests, where traditional remote-sensing techniques and terrestrial biosphere models fail to reproduce the seasonality of GPP.

View Article and Find Full Text PDF

High-latitude warming is capable of accelerating permafrost degradation and the decomposition of previously frozen carbon. The existence of an analogous high-altitude feedback, however, has yet to be directly evaluated. We address this knowledge gap by coupling a radiocarbon-based model to 7 years (2008-2014) of continuous eddy covariance data from a snow-scoured alpine tundra meadow in Colorado, USA, where solifluction lobes are associated with discontinuous permafrost.

View Article and Find Full Text PDF

Ecosystem models often perform poorly in reproducing interannual variability in carbon and water fluxes, resulting in considerable uncertainty when estimating the land-carbon sink. While many aggregated variables (growing season length, seasonal precipitation, or temperature) have been suggested as predictors for interannual variability in carbon fluxes, their explanatory power is limited and uncertainties remain as to their relative contributions. Recent results show that the annual count of hours where evapotranspiration (ET) is larger than its 95th percentile is strongly correlated with the annual variability of ET and gross primary production (GPP) in an ecosystem model.

View Article and Find Full Text PDF

Global modeling efforts indicate semiarid regions dominate the increasing trend and interannual variation of net CO2 exchange with the atmosphere, mainly driven by water availability. Many semiarid regions are expected to undergo climatic drying, but the impacts on net CO2 exchange are poorly understood due to limited semiarid flux observations. Here we evaluated 121 site-years of annual eddy covariance measurements of net and gross CO2 exchange (photosynthesis and respiration), precipitation, and evapotranspiration (ET) in 21 semiarid North American ecosystems with an observed range of 100 - 1000 mm in annual precipitation and records of 4-9 years each.

View Article and Find Full Text PDF

Terrestrial gross primary productivity (GPP) varies greatly over time and space. A better understanding of this variability is necessary for more accurate predictions of the future climate-carbon cycle feedback. Recent studies have suggested that variability in GPP is driven by a broad range of biotic and abiotic factors operating mainly through changes in vegetation phenology and physiological processes.

View Article and Find Full Text PDF