Although aberrant reactivation of embryonic gene programs is intricately linked to pathological heart disease, the transcription factors driving these gene programs remain ill-defined. Here we report that increased calcineurin/Nfat signalling and decreased miR-25 expression integrate to re-express the basic helix-loop-helix (bHLH) transcription factor dHAND (also known as Hand2) in the diseased human and mouse myocardium. In line, mutant mice overexpressing Hand2 in otherwise healthy heart muscle cells developed a phenotype of pathological hypertrophy.
View Article and Find Full Text PDFBackground & Aims: Hand2 is a basic helix-loop-helix transcription factor required for terminal differentiation of enteric neurons. We studied Hand2 haploinsufficient mice, to determine whether reduced expression of Hand2 allows sufficient enteric neurogenesis for survival, but not for development of a normal enteric nervous system (ENS).
Methods: Enteric transcripts that encode Hand2 and the neuron-specific embryonic lethal abnormal vision proteins HuB, HuC, and HuD were quantified.
Rationale: The basic helix-loop-helix (bHLH) transcription factors Hand1 and Hand2 are essential for embryonic development. Given their requirement for cardiogenesis, it is imperative to determine their impact on cardiovascular function.
Objective: To deduce the role of Hand2 within the epicardium.
The BMP signaling plays a pivotal role in the development of craniofacial organs, including the tooth and palate. BmprIa and BmprIb encode two type I BMP receptors that are primarily responsible for BMP signaling transduction. We investigated mesenchymal tissue-specific requirement of BmprIa and its functional redundancy with BmprIb during the development of mouse tooth and palate.
View Article and Find Full Text PDFPreaxial polydactyly (PPD) is a common limb-associated birth defect characterized by extra digit(s) in the anterior autopod. It often results from ectopic sonic hedgehog (Shh) expression in the anterior limb bud. Although several transcription factors are known to restrict Shh expression to the posterior limb bud, how they function together remains unclear.
View Article and Find Full Text PDFHand1 regulates development of numerous tissues within the embryo, extraembryonic mesoderm, and trophectoderm. Systemic loss of Hand1 results in early embryonic lethality but the cause has remained unknown. To determine if Hand1 expression in extraembryonic mesoderm is essential for embryonic survival, Hand1 was conditionally deleted using the HoxB6-Cre mouse line that expresses Cre in extraembryonic and lateral mesoderm.
View Article and Find Full Text PDFThe neural crest (NC) lineage gives rise to a wide array of cell types ranging from neurons and glia of the peripheral nervous system to skeletal elements of the head. The mechanisms regulating NC differentiation into such a large number of cell types remain largely unknown. MicroRNAs (miRNAs) play key roles in regulating developmental events suggesting they may also play a role during NC differentiation.
View Article and Find Full Text PDFInduction of the sympathetic nervous system (SNS) from its neural crest (NC) precursors is dependent on BMP signaling from the dorsal aorta. To determine the roles of BMP signaling and the pathways involved in SNS development, we conditionally knocked out components of the BMP pathways. To determine if BMP signaling is a cell-autonomous requirement of SNS development, the Alk3 (BMP receptor IA) was deleted in the NC lineage.
View Article and Find Full Text PDFSonic hedgehog (Shh) plays critical roles during nervous system development, yet little is known about its function in the sympathetic nervous system. Using a mouse Shh null line, we examined the roles of Shh during SNS development. Loss of Shh did not prevent formation of the sympathetic trunk, but the ganglia are hypoplastic and misspatterned.
View Article and Find Full Text PDFThe basic helix-loop-helix (bHLH) transcription factor Hand2 has been implicated in the development of multiple organs, including craniofacial organs. Mice carrying Hand2 hypomorphic alleles (Hand2(LoxP/-)) display a cleft palate phenotype. A specific deletion of the Hand2 branchial arch-specific enhancer also leads to a hypoplastic mandible and cleft palate formation in mice.
View Article and Find Full Text PDFThe cardiac neural crest (cNC) lineage plays key roles in heart development by directly contributing to heart structures and regulating development of other heart lineages. The basic helix-loop-helix factor Hand2 regulates development of cardiovascular structures and NC-derived tissues including those that contribute to face and peripheral nervous system. Although Hand2 is expressed in cNC, its role has not been examined because of an early embryonic lethality when Hand2 is deleted in the NC lineage.
View Article and Find Full Text PDFThe basic helix-loop-helix (bHLH) transcription factor Hand2 has been shown to play a role in the development of the mammalian sympathetic nervous system (SNS); however, its precise role could not be uncovered because Hand2 is required for early embryonic survival. We therefore generated a conditional Hand2 knockout mouse line by excising Hand2 in Wnt1-Cre-expressing neural crest-derived cells. These mice die at 12.
View Article and Find Full Text PDFHand genes encode basic helix-loop-helix transcription factors that are expressed in the developing gut, where their function is unknown. We now report that enteric Hand2 expression is limited to crest-derived cells, whereas Hand1 expression is restricted to muscle and interstitial cells of Cajal. Hand2 is developmentally regulated and is intranuclear in precursors but cytoplasmic in neurons.
View Article and Find Full Text PDFTargeted deletion of the mef2c gene results in a small left ventricle and complete loss of the right ventricle (Lin et al. [1997] Science 276:1404-1407). Absence of the right ventricle is from defective differentiation of cells from the secondary heart field.
View Article and Find Full Text PDFMammalian autonomic nervous system (ANS) development requires the combinatorial action of a number of transcription factors, which include Mash 1, Phox 2b, and GATA 3. Here we show that the bHLH transcription factor, Hand 2 (dHAND), is expressed concurrently with Mash 1 during sympathetic nervous system (SNS) development and that the expression of Hand 2 is not dependent on Mash 1. This suggests that these two bHLH factors work in parallel during SNS development.
View Article and Find Full Text PDFAutosomal dominant mutations in the gene encoding the basic helix-loop-helix transcription factor Twist1 are associated with limb and craniofacial defects in humans with Saethre-Chotzen syndrome. The molecular mechanism underlying these phenotypes is poorly understood. We show that ectopic expression of the related basic helix-loop-helix factor Hand2 phenocopies Twist1 loss of function in the limb and that the two factors have a gene dosage-dependent antagonistic interaction.
View Article and Find Full Text PDFHAND2 (also known as dHAND) is a basic helix-loop-helix (bHLH) transcription factor essential for development of the heart, limbs, and neural crest-derived lineages. HAND2 expression is observed in a number of tissues derived from the neural crest, including components of the peripheral nervous system, where it has been shown to regulate sympathetic nervous system development. Here we show that HAND2 is expressed in both the sympathetic and the parasympathetic divisions of the autonomic nervous system (ANS).
View Article and Find Full Text PDFThe basic helix-loop-helix (bHLH) transcription factor HAND1 (also called eHAND) is expressed in numerous tissues during development including the heart, limbs, neural crest derivatives and extra-embryonic membranes. To investigate the role of Hand1 during development, we generated a Hand1 knockout mouse. Hand1-null mice survived to the nine somite stage at which time they succumbed to numerous developmental defects.
View Article and Find Full Text PDFThe bHLH factors HAND1 and HAND2 are required for heart, vascular, neuronal, limb, and extraembryonic development. Unlike most bHLH proteins, HAND factors exhibit promiscuous dimerization properties. We report that phosphorylation/dephosphorylation via PKA, PKC, and a specific heterotrimeric protein phosphatase 2A (PP2A) modulates HAND function.
View Article and Find Full Text PDFAn intricate array of heterogeneous transcription factors participate in programming tissue-specific gene expression through combinatorial interactions that are unique to a given cell-type. The zinc finger-containing transcription factor GATA4, which is widely expressed in mesodermal and endodermal derived tissues, is thought to regulate cardiac myocyte-specific gene expression through combinatorial interactions with other semi-restricted transcription factors such as myocyte enhancer factor 2, nuclear factor of activated T-cells, serum response factor, and Nkx2.5.
View Article and Find Full Text PDFHAND2 (dHAND) is a basic helix-loop-helix (bHLH) transcription factor expressed in numerous tissues during development including the heart, limbs, and a subset of neural crest derivatives. Functional analysis has shown that HAND2 is involved in development of the branchial arches, heart, limb, vasculature, and nervous system. Although it is essential for development of numerous tissues, little is known about its mode of action.
View Article and Find Full Text PDF