The bromodomain and extra terminal (BET) family of bromodomain-containing proteins are important epigenetic regulators that elicit their effect through binding histone tail -acetyl lysine (KAc) post-translational modifications. Recognition of such markers has been implicated in a range of oncology and immune diseases and, as such, small-molecule inhibition of the BET family bromodomain-KAc protein-protein interaction has received significant interest as a therapeutic strategy, with several potential medicines under clinical evaluation. This work describes the structure- and property-based optimization of a ligand and lipophilic efficient pan-BET bromodomain inhibitor series to deliver candidate I-BET787 () that demonstrates efficacy in a mouse model of inflammation and suitable properties for both oral and intravenous (IV) administration.
View Article and Find Full Text PDFSmall-molecule-mediated disruption of the protein-protein interactions between acetylated histone tails and the tandem bromodomains of the bromodomain and extra-terminal (BET) family of proteins is an important mechanism of action for the potential modulation of immuno-inflammatory and oncology disease. High-quality chemical probes have proven invaluable in elucidating profound BET bromodomain biology, with seminal publications of both pan- and domain-selective BET family bromodomain inhibitors enabling academic and industrial research. To enrich the toolbox of structurally differentiated N-terminal bromodomain (BD1) BET family chemical probes, this work describes an analysis of the GSK BRD4 bromodomain data set through a lipophilic efficiency lens, which enabled identification of a BD1 domain-biased benzimidazole series.
View Article and Find Full Text PDFThere is an urgent need for new treatments for Chagas disease, a parasitic infection which mostly impacts South and Central America. We previously reported on the discovery of GSK3494245/DDD01305143, a preclinical candidate for visceral leishmaniasis which acted through inhibition of the proteasome. A related analogue, active against , showed suboptimal efficacy in an animal model of Chagas disease, so alternative proteasome inhibitors were investigated.
View Article and Find Full Text PDFAssociation of single nucleotide polymorphisms in the IL-23 receptor with several auto-inflammatory diseases, led to the heterodimeric receptor and its cytokine-ligand IL-23, becoming important drug targets. Successful antibody-based therapies directed against the cytokine have been licenced and a class of small peptide antagonists of the receptor have entered clinical trials. These peptide antagonists may offer therapeutic advantages over existing anti-IL-23 therapies, but little is known about their molecular pharmacology.
View Article and Find Full Text PDFBackground And Purpose: Interleukin-23 (IL-23) and its receptor are important drug targets for the treatment of auto-inflammatory diseases. IL-23 binds to a receptor complex composed of two single transmembrane spanning proteins IL23R and IL12Rβ1. In this study, we aimed to gain further understanding of how ligand binding induces signalling of IL-23 receptor complexes using the proximity-based techniques of NanoLuc Binary Technology (NanoBiT) and Bioluminescence Resonance Energy Transfer (BRET).
View Article and Find Full Text PDFThe bromodomain and extra terminal (BET) family of proteins are an integral part of human epigenome regulation, the dysregulation of which is implicated in multiple oncology and inflammatory diseases. Disrupting the BET family bromodomain acetyl-lysine (KAc) histone protein-protein interaction with small-molecule KAc mimetics has proven to be a disease-relevant mechanism of action, and multiple molecules are currently undergoing oncology clinical trials. This work describes an efficiency analysis of published GSK pan-BET bromodomain inhibitors, which drove a strategic choice to focus on the identification of a ligand-efficient KAc mimetic with the hypothesis that lipophilic efficiency could be drastically improved during optimization.
View Article and Find Full Text PDFBackground: SP140 is a bromodomain-containing protein expressed predominantly in immune cells. Genetic polymorphisms and epigenetic modifications in the SP140 locus have been linked to Crohn's disease (CD), suggesting a role in inflammation.
Results: We report the development of the first small molecule SP140 inhibitor (GSK761) and utilize this to elucidate SP140 function in macrophages.
Curr Opin Microbiol
October 2022
Tuberculosis (TB) persists as a major global health issue and a leading cause of death by a single infectious agent. The global burden of TB is further exacerbated by the continuing emergence and dissemination of strains of Mycobacterium tuberculosis resistant to multiple antibiotics. The need for novel drugs that can be used to shorten the course for current TB drug regimens as well as combat the persistent threat of antibiotic resistance has never been greater.
View Article and Find Full Text PDFThe Kinetic Intra-Cellular Assay (KICA) is a recombinant cell-based technique that utilizes NanoBRET technology. KICA enables the measurement of intracellular binding kinetics. This protocol describes steps for cellular transfection and expression, followed by addition of a target specific fluorophore conjugated probe and a range of concentrations of competitor compounds, followed by the measurement of BRET in a 384 well format.
View Article and Find Full Text PDFThrough regulation of the epigenome, the bromodomain and extra terminal (BET) family of proteins represent important therapeutic targets for the treatment of human disease. Through mimicking the endogenous -acetyl-lysine group and disrupting the protein-protein interaction between histone tails and the bromodomain, several small molecule pan-BET inhibitors have progressed to oncology clinical trials. This work describes the medicinal chemistry strategy and execution to deliver an orally bioavailable tetrahydroquinoline (THQ) pan-BET candidate.
View Article and Find Full Text PDFContemporary drug discovery typically quantifies the effect of a molecule on a biological target using the equilibrium-derived measurements of IC, EC, or K. Kinetic descriptors of drug binding are frequently linked with the effectiveness of a molecule in modulating a disease phenotype; however, these parameters are yet to be fully adopted in early drug discovery. Nanoluciferase bioluminescence resonance energy transfer (NanoBRET) can be used to measure interactions between fluorophore-conjugated probes and luciferase fused target proteins.
View Article and Find Full Text PDFBromodomain containing proteins and the acetyl-lysine binding bromodomains contained therein are increasingly attractive targets for the development of novel epigenetic therapeutics. To help validate this target class and unravel the complex associated biology, there has been a concerted effort to develop selective small molecule bromodomain inhibitors. Herein we describe the structure-based efforts and multiple challenges encountered in optimizing a naphthyridone template into selective TAF1(2) bromodomain inhibitors which, while unsuitable as chemical probes themselves, show promise for the future development of small molecules to interrogate TAF1(2) biology.
View Article and Find Full Text PDFInterleukin-23 (IL-23) is a pro-inflammatory cytokine involved in the host defense against pathogens but is also implicated in the development of several autoimmune disorders. The IL-23 receptor has become a key target for drug discovery, but the exact mechanism of the receptor ligand interaction remains poorly understood. In this study the affinities of IL-23 for its individual receptor components (IL23R and IL12Rβ1) and the heteromeric complex formed between them have been measured in living cells using NanoLuciferase-tagged full-length proteins.
View Article and Find Full Text PDFThe predominant assay detection methodologies used for enzyme inhibitor identification during early-stage drug discovery are fluorescence-based. Each fluorophore has a characteristic fluorescence decay, known as the fluorescence lifetime, that occurs throughout a nanosecond-to-millisecond timescale. The measurement of fluorescence lifetime as a reporter for biological activity is less common than fluorescence intensity, even though the latter has numerous issues that can lead to false-positive readouts.
View Article and Find Full Text PDFThe bromodomain and extraterminal domain (BET) family of epigenetic regulators comprises four proteins (BRD2, BRD3, BRD4, BRDT), each containing tandem bromodomains. To date, small molecule inhibitors of these proteins typically bind all eight bromodomains of the family with similar affinity, resulting in a diverse range of biological effects. To enable further understanding of the broad phenotype characteristic of pan-BET inhibition, the development of inhibitors selective for individual, or sets of, bromodomains within the family is required.
View Article and Find Full Text PDFPan-bromodomain and extra terminal domain (BET) inhibitors interact equipotently with the eight bromodomains of the BET family of proteins and have shown profound efficacy in a number of phenotypic assays and pre-clinical models in inflammation or oncology. A number of these inhibitors have progressed to the clinic where pharmacology-driven adverse events have been reported. To better understand the contribution of each domain to their efficacy and improve their safety profile, selective inhibitors are required.
View Article and Find Full Text PDFNon-BET bromodomain-containing proteins have become attractive targets for the development of novel therapeutics targeting epigenetic pathways. To help facilitate the target validation of this class of proteins, structurally diverse small-molecule ligands and methodologies to produce selective inhibitors in a predictable fashion are in high demand. Herein, we report the development and application of atypical acetyl-lysine (KAc) methyl mimetics to take advantage of the differential stability of conserved water molecules in the bromodomain binding site.
View Article and Find Full Text PDFThe bromodomain and extraterminal (BET) family of bromodomain-containing proteins are important regulators of the epigenome through their ability to recognize -acetyl lysine (KAc) post-translational modifications on histone tails. These interactions have been implicated in various disease states and, consequently, disruption of BET-KAc binding has emerged as an attractive therapeutic strategy with a number of small molecule inhibitors now under investigation in the clinic. However, until the utility of these advanced candidates is fully assessed by these trials, there remains scope for the discovery of inhibitors from new chemotypes with alternative physicochemical, pharmacokinetic, and pharmacodynamic profiles.
View Article and Find Full Text PDFMalfunctions in the basic epigenetic mechanisms such as histone modifications, DNA methylation, and chromatin remodeling are implicated in a number of cancers and immunological and neurodegenerative conditions. Within GlaxoSmithKline (GSK) we have utilized a number of variations of the NanoBRET technology for the direct measurement of compound-target engagement within native cellular environments to drive high-throughput, routine structure-activity relationship (SAR) profiling across differing epigenetic targets. NanoBRET is a variation of the bioluminescence resonance energy transfer (BRET) methodology utilizing proteins of interest fused to either NanoLuc, a small, high-emission-intensity luciferase, or HaloTag, a modified dehalogenase enzyme that can be selectively labeled with a fluorophore.
View Article and Find Full Text PDFThe bromodomain of ATAD2 has proved to be one of the least-tractable proteins within this target class. Here, we describe the discovery of a new class of inhibitors by high-throughput screening and show how the difficulties encountered in establishing a screening triage capable of finding progressible hits were overcome by data-driven optimization. Despite the prevalence of nonspecific hits and an exceptionally low progressible hit rate (0.
View Article and Find Full Text PDFChagas' disease, caused by the protozoan parasite , is a potentially life-threatening condition that has become a global issue. Current treatment is limited to two medicines that require prolonged dosing and are associated with multiple side effects, which often lead to treatment discontinuation and failure. One way to address these shortcomings is through target-based drug discovery on validated protein targets.
View Article and Find Full Text PDFVisceral leishmaniasis (VL), caused by the protozoan parasites and , is one of the major parasitic diseases worldwide. There is an urgent need for new drugs to treat VL, because current therapies are unfit for purpose in a resource-poor setting. Here, we describe the development of a preclinical drug candidate, GSK3494245/DDD01305143/compound 8, with potential to treat this neglected tropical disease.
View Article and Find Full Text PDFThe biosynthetic pathway of peptidoglycan is essential for Mycobacterium tuberculosis. We report here the acetyltransferase substrate specificity and catalytic mechanism of the bifunctional N-acetyltransferase/uridylyltransferase from M. tuberculosis (GlmU).
View Article and Find Full Text PDFp300/CREB binding protein associated factor (PCAF/KAT2B) and general control nonderepressible 5 (GCN5/KAT2A) are multidomain proteins that have been implicated in retroviral infection, inflammation pathways, and cancer development. However, outside of viral replication, little is known about the dependence of these effects on the C-terminal bromodomain. Herein, we report GSK4027 as a chemical probe for the PCAF/GCN5 bromodomain, together with GSK4028 as an enantiomeric negative control.
View Article and Find Full Text PDF