Publications by authors named "Peter Cormie"

Background: Venous leg ulcers can be very hard to heal and represent a significant medical need with no effective therapeutic treatment currently available.

Principal Findings: In wound edge biopsies from human venous leg ulcers we found a striking upregulation of dermal N-cadherin, Zonula Occludens-1 and the gap junction protein Connexin43 (Cx43) compared to intact skin, and in stark contrast to the down-regulation of Cx43 expression seen in acute, healing wounds. We targeted the expression of these proteins in 3T3 fibroblasts to evaluate their role in venous leg ulcers healing.

View Article and Find Full Text PDF

Poor healing of DFUs (diabetic foot ulcers) is a major clinical problem that can be extremely debilitating and lead to lower limb amputation. In the normal acute wound, the Cx43 (connexin 43) gap junction protein is down-regulated at the wound edge as a precursor to cell migration and healing. In fibroblasts from the human chronic DFU wound edge there was a striking and significant 10-fold elevation of Cx43 protein, as well as a 6-fold increase in N-cadherin and a 2-fold increase in ZO-1 (zonular occludin-1), compared with unwounded skin.

View Article and Find Full Text PDF

Many cells respond directionally to small DC electrical fields (EFs) by an unknown mechanism, but changes in intracellular Ca(2+) are widely assumed to be involved. We have used zebrafish (Danio rerio) keratocytes in an effort to understand the nature of the EF-cell interaction. We find that the adult zebrafish integument drives substantial currents outward through wounds produced by scale removal, establishing that keratocytes near the wound will experience endogenous EFs.

View Article and Find Full Text PDF

An important basis for the clinical application of small DC electric current to mammalian spinal injury is the responses of neurons in culture to applied electric fields. Our recent finding that zebrafish neurons were unresponsive to applied fields prompted us to critically examine previous results. We conclude that compelling evidence for neuronal guidance and directional stimulation of growth toward either the cathode or anode in an electric field exists only for cultured Xenopus neurons, and not for any mammalian neurons.

View Article and Find Full Text PDF

Naturally occurring electric fields (EFs) have been implicated in cell guidance during embryonic development and adult wound healing. Embryonic Xenopus laevis neurons sprout preferentially towards the cathode, turn towards the cathode, and migrate faster towards the cathode in the presence of an external EF in vitro. A recent Phase 1 clinical trial has investigated the effects of oscillating EFs on human spinal cord regeneration.

View Article and Find Full Text PDF