Publications by authors named "Peter Cohen"

Multiple Myeloma (MM) patients suffer disease relapse due to the development of therapeutic resistance. Increasing evidence suggests that immunotherapeutic strategies can provide durable responses. Here we evaluate the possibility of adoptive cell transfer (ACT) by generating T cells from peripheral blood mononuclear cells (PBMCs) isolated from MM patients by employing our previously devised protocols.

View Article and Find Full Text PDF

A fully synthetic MUC1-based cancer vaccine was designed and chemically synthesized containing an endogenous helper T-epitope (MHC class II epitope). The vaccine elicited robust IgG titers that could neutralize cancer cells by antibody-dependent cell-mediated cytotoxicity (ADCC). It also activated cytotoxic T-lymphocytes.

View Article and Find Full Text PDF

In this study we demonstrate the use of Direct Analysis in Real Time Mass Spectrometry (DART) as a powerful tool for detection of nonoxynol in vaginal fluid post contact with a condom, enabling rapid tracing and added evidences in sexual assault crimes. Vaginal fluid was sampled using cotton swabs and glass rods and measured directly with DART. Sample preparation using water, hexane, methanol, and dichloromethane extraction, was explored for comparison and optimization of signals.

View Article and Find Full Text PDF

We have previously reported that direct injection of dendritic cells (DC) engineered to express the Type-1 transactivator Tbet (i.e., DC.

View Article and Find Full Text PDF

Morbidly obese patients who accomplish substantial weight loss often display a long-term decline in their resting metabolism, causing even relatively restrained caloric intake to trigger a relapse to the obese state. Paradoxically, we observed that morbidly obese mice receiving chemotherapy for cancer experienced spontaneous weight reduction despite unabated ingestion of their high fat diet (HFD). This response to chemotherapy could also be achieved in morbidly obese mice without cancer.

View Article and Find Full Text PDF

Effective adoptive immunotherapy has proved elusive for many types of human cancer, often due to difficulties achieving robust expansion of natural tumor-specific T-cells from peripheral blood. We hypothesized that antigen-driven T-cell expansion might best be triggered in vitro by acute activation of innate immunity to mimic a life-threatening infection. Unfractionated peripheral blood mononuclear cells (PBMC) were subjected to a two-step culture, first synchronizing their exposure to exogenous antigens with aggressive surrogate activation of innate immunity, followed by γ-chain cytokine-modulated T-cell hyperexpansion.

View Article and Find Full Text PDF

Little is known about the association between myeloid-derived suppressor cell (MDSC) subsets and various chemokines in patients with renal cell carcinoma (RCC) or the factors that draw MDSC into tumor parenchyma. We analyzed polymorphonuclear MDSC (PMN-MDSC), monocytic MDSC (M-MDSC), and immature MDSC (I-MDSC) from the parenchyma and peripheral blood of 48 patients with RCC, isolated at nephrectomy. We analyzed levels of IL1β, IL8, CXCL5, Mip-1α, MCP-1, and Rantes.

View Article and Find Full Text PDF

This work explores the relationship between theoretically predicted excitation energies and experimental molar absorption spectra as they pertain to environmental aquatic photochemistry. An overview of pertinent Quantum Chemical descriptions of sunlight-driven electronic transitions in organic pollutants is presented. Second, a combined molecular dynamics (MD), time-dependent density functional theory (TD-DFT) analysis of the ultraviolet to visible (UV-Vis) absorption spectra of six model organic compounds is presented alongside accurate experimental data.

View Article and Find Full Text PDF

Many cancers both evoke and subvert endogenous anti-tumor immunity. However, immunosuppression can be therapeutically reversed in subsets of cancer patients by treatments such as checkpoint inhibitors or Toll-like receptor agonists (TLRa). Moreover, chemotherapy can leukodeplete immunosuppressive host elements, including myeloid-derived suppressor cells (MDSCs) and regulatory T-cells (Tregs).

View Article and Find Full Text PDF

It remains challenging to produce decisive vaccines against MUC1, a tumor-associated antigen widely expressed by pancreas, breast and other tumors. Employing clinically relevant mouse models, we ruled out such causes as irreversible T-cell tolerance, inadequate avidity, and failure of T-cells to recognize aberrantly glycosylated tumor MUC1. Instead, every tested MUC1 preparation, even non-glycosylated synthetic 9mer peptides, induced interferon gamma-producing CD4(+) and CD8(+) T-cells that recognized glycosylated variants including tumor-associated MUC1.

View Article and Find Full Text PDF

Purpose: Immunotherapy as a treatment for cancer holds the promise of complete and durable tumor remission, yet the immunosuppressive environment created by many tumors, advanced patient age, and previous treatments with cytotoxic agents may limit the approach. The activity of motolimod (VTX-2337), a potent and selective Toll-like receptor 8 (TLR8) agonist, was therefore assessed in the context of advanced, late-stage cancer patients.

Experimental Design: The repertoire of mediators induced from human peripheral blood mononuclear cells in response to motolimod was characterized.

View Article and Find Full Text PDF

A strategy for the linear synthesis of a sialylated glycolipopeptide cancer vaccine candidate has been developed using a strategically designed sialyl-Tn building block and microwave-assisted solid-phase peptide synthesis. The glycolipopeptide elicited potent humoral and cellular immune responses. T-cells primed by such a vaccine candidate could be restimulated by tumor-associated MUC1.

View Article and Find Full Text PDF

The tolerogenic cytokine IL9 promotes T regulatory cell function and allergic airway inflammation, but it has not been extensively studied in cancer. In this report, we used IL9-deficient mice to investigate the effects of IL9 in multiple models of breast and colon cancer development. Eliminating endogenous IL9 enabled sensitization of host T cells to tumors, leading to their early rejection without the requirement of vaccines or immunomodulatory therapies.

View Article and Find Full Text PDF

The mucin MUC1 is overexpressed and aberrantly glycosylated by many epithelial cancer cells manifested by truncated O-linked saccharides. Although tumor-associated MUC1 has generated considerable attention because of its potential for the development of a therapeutic cancer vaccine, it has been difficult to design constructs that consistently induce cytotoxic T-lymphocytes (CTLs) and ADCC-mediating antibodies specific for the tumor form of MUC1. We have designed, chemically synthesized, and immunologically examined vaccine candidates each composed of a glycopeptide derived from MUC1, a promiscuous Thelper peptide, and a TLR2 (Pam3 CysSK4 ) or TLR9 (CpG-ODN 1826) agonist.

View Article and Find Full Text PDF

Purpose: This phase I, open-label, uncontrolled, ascending-dose study explored the safety, maximum tolerated dose (MTD), pharmacokinetics, and pharmacology of the TLR8 agonist VTX-2337 in subjects with advanced solid tumors or lymphoma.

Experimental Design: VTX-2337 doses (0.1-3.

View Article and Find Full Text PDF

Purpose: It has been demonstrated that large numbers of tumor-specific T cells for adoptive cell transfer (ACT) can be manufactured by retroviral genetic engineering of autologous peripheral blood lymphocytes and expanding them over several weeks. In mouse models, this therapy is optimized when administered with dendritic cell (DC) vaccination. We developed a short 1-week manufacture protocol to determine the feasibility, safety, and antitumor efficacy of this double cell therapy.

View Article and Find Full Text PDF

Sunitinib, a protein tyrosine kinase inhibitor is the frontline therapy for renal and gastrointestinal cancers. We hypothesized that by virtue of its well documented tumor apoptosis and immune adjuvant properties, combination of Sunitinib with anti-tumor immunotherapeutics will provide synergistic inhibition of tumor growth. Our study was designed to evaluate the impact of Sunitinib on immunotherapy mediated anti-tumor immune responses and evaluate its efficacy as a combinatorial therapy with tumor targeted immunotherapeutic vaccination.

View Article and Find Full Text PDF

Purpose: MUC1 is a tumor-associated antigen that is aberrantly expressed in cancer and inflammatory bowel disease (IBD). Even though immune cells express low MUC1 levels, their modulations of MUC1 are important in tumor progression. Consistent with previous clinical data that show increased myeloid-derived suppressor cells (MDSCs) in IBD, we now show that downregulation of MUC1 on hematopoietic cells increases MDSCs in IBD, similar to our data in tumor-bearing mice.

View Article and Find Full Text PDF

To move forward with immunotherapy, it is important to understand how the tumor microenvironment generates systemic immunosuppression in patients with renal cell carcinoma (RCC) as well as in patients with other types of solid tumors. Even though antigen discovery in RCC has lagged behind melanoma, recent clinical trials have finally authenticated that RCC is susceptible to vaccine-based therapy. Furthermore, judicious coadministration of cytokines and chemotherapy can potentiate therapeutic responses to vaccine in RCC and prolong survival, as has already proved possible for melanoma.

View Article and Find Full Text PDF

Strategically-paired Toll-like receptor (TLR) ligands induce a unique dendritic cell (DC) phenotype that polarizes Th1 responses. We therefore investigated pairing single TLR ligands with a non TLR-mediated danger signal to cooperatively induce distinct DC properties from cultured human monocytes. Adenosine triphosphate (ATP) and the TLR2 ligand lipoteichoic acid (LTA) selectively and synergistically induced expression of IL-23 and IL-1β from cultured monocytes as determined by ELISA assays.

View Article and Find Full Text PDF

The receptor tyrosine kinase inhibitor, sunitinib, is astonishingly effective in its capacity to reduce MDSCs in peripheral tissues such as blood (human) and spleen (mouse), restoring responsiveness of bystander T lymphocytes to TcR stimulation. Sunitinib blocks proliferation of undifferentiated MDSCs and decreases survival of more differentiated neutrophilic MDSC (n-MDSC) progeny. Ironically, sunitinib's profound effects are observed even in a total absence of detectable anti-tumor therapeutic response.

View Article and Find Full Text PDF

Background: Increasing evidence shows chemotherapy in combination with vascular endothelial growth factor (VEGF) inhibition is a clinically active therapy for patients with metastatic melanoma (MM).

Methods: A phase 2 trial was conducted in chemotherapy-naive patients with unresectable stage IV MM who were randomized to temozolomide (200 mg/m(2) on days 1 through 5) and bevacizumab (10 mg/kg intravenously on days 1 and 15) every 28 days (Regimen TB) or nab-paclitaxel (100 mg/m(2) , or 80 mg/m(2) post-addendum 5 secondary to toxicity, on days 1, 8, and 15), bevacizumab (10 mg/kg on days 1 and 15), and carboplatin (area under the curve [AUC] 6 on day 1, or AUC 5 post-addendum 5) every 28 days (Regimen ABC). Accrual goal was 41 patients per regimen.

View Article and Find Full Text PDF

Purpose: We sought to determine if an exercise programme of moderate aerobic intensity would decrease the heart-rate response to mental stress in teenagers with normal hearts.

Methods: Mental stress testing (50 arithmetic problems) was performed in student volunteers before and after a 5-week period of rigorous aerobic exercise training of 2.5 h for 5 days/week.

View Article and Find Full Text PDF