This geospatial dataset provides a compilation of findings from an evidence-based review of site-specific resource assessments of mining and metallurgical residues. Information pertaining to location, target material, geological knowledge, extractability, resource classification and stakeholder perspectives was collected from publicly available reports, articles, academic theses, and databases. The dataset includes 44 relevant data attributes from 64 mining and metallurgical sites in 27 countries.
View Article and Find Full Text PDFNature-based solutions (NbS) have gained significant attention as a promising approach for remediating contaminated lands, offering multiple ecosystem services (ESs) benefits beyond pollution mitigation. However, the quantitative sustainability assessment of NbS remediation systems, particularly with regard to post-remediation impacts, remains limited. This mini-review aims to address the existing gaps in the assessment of NbS remediation systems by evaluating the limitations of life cycle assessment (LCA) and cost-benefit analysis (CBA) methodologies.
View Article and Find Full Text PDFThis paper explores the extent to which enzymatic and bacterial biodelignification systems can breakdown lignocellulose in model wastes to potentially enhance biogas generation. Two representative lignocellulosic wastes (newspaper and softwood) commonly found largely undegraded in old landfills were used. A fungal peroxidase (lignin peroxidase) enzyme and a recently isolated lignin-degrading bacterial strain (Agrobacterium sp.
View Article and Find Full Text PDFInt J Numer Methods Eng
December 2019
A number of effective models have been developed for simulating chemical transport in porous media; however, when a reactive chemical problem comprises multiple species within a substantial domain for a long period of time, the computational cost can become prohibitively expensive. This issue is addressed here by proposing a new numerical procedure to reduce the number of transport equations to be solved. This new problem reduction scheme (PRS) uses a predictor-corrector approach, which "predicts" the transport of a set of non-indicator species using results from a set of indicator species before "correcting" the non-indicator concentrations using a mass balance error measure.
View Article and Find Full Text PDFThe success of phytoremediation is dependent on the exposure of plants to contaminants, which is controlled by root distribution, physicochemical characteristics, and contaminant behavior in the soil environment. Whilst phytoremediation has been successful in remediating hydrocarbons and other organic contaminants, there is little understanding of the impact of non-aqueous phase liquids (NAPLs) on plant behavior, root architecture and the resulting impact of this on phytoremediation. Light NAPLs (LNAPLs) may be present in pore spaces in the capillary zone as a continuous or semi-continuous phase, or as unconnected ganglia which act as individual contaminant sources.
View Article and Find Full Text PDFGranular materials with synthetic water repellent coatings have great potential to be used in ground interfaces (ground-atmosphere-vegetation and ground-structure) as infiltration barriers, due to their altered hydrological properties (suppressed infiltration and decreased sorptivity). However, very few studies have evaluated the impact of synthetic soil water repellency on soil erosion. This paper investigates the effect of water repellency on soil erosional behavior, including splash erosion and rill processes.
View Article and Find Full Text PDFIn this paper, we discuss recent efforts from the last 20 years to describe transport in municipal solid waste (MSW). We first discuss emerging themes in the field to draw the reader's attention to a series of significant challenges. We then examine contributions regarding the modelling of leachate flow to study transport via mechanistic and stochastic approaches, at a variety of scales.
View Article and Find Full Text PDFIndustrial waste deposits contain substantial quantities of valuable metals and other resources, although often in a recalcitrant form that hinders their recovery. This paper reports an experimental programme on the application of electrokinetic (EK) processing to two different waste materials (a mine tailings deposit and a metallurgical furnace dust), with the aim of exploring the effect of EK on metal speciation and extractability, with a focus on Pb and Zn due to their prevalence in these materials. The speciation of metals within the waste was determined based on a selective sequential extraction (SSE) procedure which was applied to the materials before, during and after the application of the EK treatment.
View Article and Find Full Text PDFThe quantitative effects of three operational factors, that is initial compaction, decomposition condition and leachate level, on municipal solid waste (MSW) landfill settlement and storage capacity are investigated in this article via consideration of a hypothetical case. The implemented model for calculating landfill compression displacement is able to consider decreases in compressibility induced by biological decomposition and load dependence of decomposition compression for the MSW. According to the investigation, a significant increase in storage capacity can be achieved by intensive initial compaction, adjustment of decomposition condition and lowering of leachate levels.
View Article and Find Full Text PDF