Taurine is a conditionally essential micronutrient and one of the most abundant amino acids in humans. In endogenous taurine metabolism, dedicated enzymes are involved in the biosynthesis of taurine from cysteine and in the downstream metabolism of secondary taurine metabolites. One taurine metabolite is N-acetyltaurine.
View Article and Find Full Text PDFTaurine is a conditionally essential micronutrient and one of the most abundant amino acids in humans. In endogenous taurine metabolism, dedicated enzymes are involved in biosynthesis of taurine from cysteine as well as the downstream derivatization of taurine into secondary taurine metabolites. One such taurine metabolite is N-acetyltaurine.
View Article and Find Full Text PDFIndividuals with diabetes are at a higher risk of developing foot ulcers. To better understand internal soft tissue loading and potential treatment options, subject-specific finite element (FE) foot models have been used. However, existing models typically lack subject-specific soft tissue material properties and only utilize subject-specific anatomy.
View Article and Find Full Text PDFMany biological processes are executed and regulated through the molecular interactions of proteins and nucleic acids. Proximity labeling (PL) is a technology for tagging the endogenous interaction partners of specific protein 'baits', via genetic fusion to promiscuous enzymes that catalyze the generation of diffusible reactive species in living cells. Tagged molecules that interact with baits can then be enriched and identified by mass spectrometry or nucleic acid sequencing.
View Article and Find Full Text PDFObjectives: Following a diagnosis of cancer, the detailed assessment of prognostic stage by radiology is a crucial determinant of initial therapeutic strategy offered to patients. Pretherapeutic stage by imaging is known to be inconsistently documented. We tested whether the completeness of cancer staging radiology reports could be improved through a nationally introduced pilot of proforma-based reporting for a selection of six common cancers.
View Article and Find Full Text PDFThis report describes a novel method for isolating and detecting individual enzyme molecules using polymer arrays of picoliter microwells. A fluidic flow-cell device containing an array of microwells is fabricated in cyclic olefin polymer (COP). The use of COP microwell arrays simplifies experiments by eliminating extensive device preparation and surface functionalization that are common in other microwell array formats.
View Article and Find Full Text PDFAerosp Med Hum Perform
August 2017
Background: Treadmills have been employed as both a form of exercise and a countermeasure to prevent changes in the musculoskeletal system on almost all NASA missions and many Russian missions since the early Space Shuttle flights. It is possible that treadmills may also be part of exercise programs on future Mars missions and that they may be a component of exercise facilities in lunar or Martian habitats.
Methods: In order to determine if the ambient gravity on these destinations will provide osteogenic effects while performing exercise on a treadmill, ground reactions forces (GRFs) were measured on eight subjects (six women and two men) running at 6 mph during parabolic flight in Martian and lunar gravity conditions.
Foot loading rate, load magnitude, and the presence of diseases such as diabetes can all affect the mechanical properties of the plantar soft tissues of the human foot. The hydraulic plantar soft tissue reducer instrument was designed to gain insight into which variables are the most significant in determining these properties. It was used with gated magnetic resonance imaging to capture three-dimensional images of feet under dynamic loading conditions.
View Article and Find Full Text PDFWithout effective countermeasures, the musculoskeletal system is altered by the microgravity environment of long-duration spaceflight, resulting in atrophy of bone and muscle tissue, as well as in deficits in the function of cartilage, tendons, and vertebral disks. While inflight countermeasures implemented on the International Space Station have evidenced reduction of bone and muscle loss on low-Earth orbit missions of several months in length, important knowledge gaps must be addressed in order to develop effective strategies for managing human musculoskeletal health on exploration class missions well beyond Earth orbit. Analog environments, such as bed rest and/or isolation environments, may be employed in conjunction with large sample sizes to understand sex differences in countermeasure effectiveness, as well as interaction of exercise with pharmacologic, nutritional, immune system, sleep and psychological countermeasures.
View Article and Find Full Text PDFThe dose-response effects of exercise in reduced gravity on musculoskeletal health have not been well documented. It is not known whether or not individualized exercise prescriptions can be effective in preventing the substantial loss in bone mineral density and muscle function that have been observed in space flight and in bed rest. In this study, typical daily loads to the lower extremities were quantified in free-living subjects who were then randomly assigned to control or exercise groups.
View Article and Find Full Text PDFIntegration of patient-specific biomechanical measurements into the design of therapeutic footwear has been shown to improve clinical outcomes in patients with diabetic foot disease. The addition of numerical simulations intended to optimise intervention design may help to build on these advances, however at present the time and labour required to generate and run personalised models of foot anatomy restrict their routine clinical utility. In this study we developed second-generation personalised simple finite element (FE) models of the forefoot with varying geometric fidelities.
View Article and Find Full Text PDFChanges in the mechanical properties of the plantar soft tissue in people with diabetes may contribute to the formation of plantar ulcers. Such ulcers have been shown to be in the causal pathway for lower extremity amputation. The hydraulic plantar soft tissue reducer (HyPSTER) was designed to measure in vivo, rate-dependent plantar soft tissue compressive force and three-dimensional deformations to help understand, predict, and prevent ulcer formation.
View Article and Find Full Text PDFBackground: We describe a novel computational method for assessing the fit of an osteochondral graft. We applied our software to five normal wrist computed tomography (CT) scans to determine the fit of the scaphoid to the lunate fossa of the distal radius.
Methods: CT scans of five wrists were digitally rendered.
Background: Recent anatomic investigations of the lateral structures of the knee have identified a new ligament, called the anterolateral ligament (ALL). To date, the anterolateral ligament has not been biomechanically tested to determine its function.
Hypothesis: The ALL of the knee will resist internal rotation at high angles of flexion but will not resist anterior drawer forces.
Background: Over the past two decades finite element (FE) analysis has become a popular tool for researchers seeking to simulate the biomechanics of the healthy and diabetic foot. The primary aims of these simulations have been to improve our understanding of the foot's complicated mechanical loading in health and disease and to inform interventions designed to prevent plantar ulceration, a major complication of diabetes. This article provides a systematic review and summary of the findings from FE analysis-based computational simulations of the diabetic foot.
View Article and Find Full Text PDFTherapeutic footwear is frequently prescribed in cases of rheumatoid arthritis and diabetes to relieve or redistribute high plantar pressures in the region of the metatarsal heads. Few guidelines exist as to how these interventions should be designed and what effect such interventions actually have on the plantar pressure distribution. Finite element analysis has the potential to assist in the design process by refining a given intervention or identifying an optimal intervention without having to actually build and test each condition.
View Article and Find Full Text PDFObjective: To assess the efficacy of in-shoe orthoses that were designed based on shape and barefoot plantar pressure in reducing the incidence of submetatarsal head plantar ulcers in people with diabetes, peripheral neuropathy, and a history of similar prior ulceration.
Research Design And Methods: Single-blinded multicenter randomized controlled trial with subjects randomized to wear shape- and pressure-based orthoses (experimental, n = 66) or standard-of-care A5513 orthoses (control, n = 64). Patients were followed for 15 months, until a study end point (forefoot plantar ulcer or nonulcerative plantar forefoot lesion) or to study termination.
Background: Type I interferon (IFN) inhibits virus replication by activating multiple antiviral mechanisms and pathways. It has long been recognized that type I IFNs can potently block HIV-1 replication in vitro; as such, HIV-1 has been used as a system to identify and characterize IFN-induced antiviral proteins responsible for this block. IFN-induced HERC5 contains an amino-terminal Regulator of Chromosome Condensation 1 (RCC1)-like domain and a carboxyl-terminal Homologous to the E6-AP Carboxyl Terminus (HECT) domain.
View Article and Find Full Text PDFUnlabelled: The objective of this study was to devise and implement a Europe-wide study on referral guidelines for radiological imaging in the EU Member States in order to identify potential major issues, important differences between Member States and good practices. A web-based survey was used to assess the availability of imaging referral guidelines, development methodology and preferences for future initiatives for European community action to facilitate justification and appropriate use of radiological diagnostic procedures. A questionnaire was distributed to representatives of national radiological and nuclear medicine societies as well as to competent authorities for radiation protection in 30 European countries, including all 28 EU Member States.
View Article and Find Full Text PDFUnlabelled: As an integral part of the European Commission (EC) Imaging Referral Guidelines Project a 1.5-day workshop was held in Vienna on 20-21 September, 2012. At this workshop, models and good practices regarding the appropriateness and use of imaging referral guidelines (Guidelines) in Europe and worldwide were presented, together with the results of a survey of Guidelines in Europe.
View Article and Find Full Text PDFIntroduction: Humans will eventually return to the Moon and thus there is a need for a ground-based analogue to enable the study of physiological adaptations to lunar gravity. An important unanswered question is whether or not living on the lunar surface will provide adequate loading of the musculoskeletal system to prevent or attenuate the bone loss that is seen in microgravity. Previous simulations have involved tilting subjects to an approximately 9.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
January 2016
The use of musculoskeletal simulation software has become a useful tool for modelling joint and muscle forces during human activity, including in reduced gravity because direct experimentation is difficult. Knowledge of muscle and joint loads can better inform the design of exercise protocols and exercise countermeasure equipment. In this study, the LifeModelerâ„¢ (San Clemente, CA, USA) biomechanics simulation software was used to model a squat exercise.
View Article and Find Full Text PDFAccurate prediction of plantar shear stress and internal stress in the soft tissue layers of the foot using finite element models would provide valuable insight into the mechanical etiology of neuropathic foot ulcers. Accurate prediction of the internal stress distribution using finite element models requires that realistic descriptions of the material properties of the soft tissues are incorporated into the model. Our investigation focused on the creation of a novel three-dimensional (3D) finite element model of the forefoot with multiple soft tissue layers (skin, fat pad, and muscle) and the development of an inverse finite element procedure that would allow for the optimization of the nonlinear elastic coefficients used to define the material properties of the skin muscle and fat pad tissue layers of the forefoot based on a Ogden hyperelastic constitutive model.
View Article and Find Full Text PDF