Publications by authors named "Peter C Demuth"

T-cell receptor (TCR)-modified T-cell therapies have shown promise against solid tumors, but overall therapeutic benefits have been modest due in part to suboptimal T-cell persistence and activation in vivo, alongside potential tumor antigen escape. In this study, we demonstrate an approach to enhance the in vivo persistence and function of TCR T cells through combination with Amphiphile (AMP) vaccination including cognate TCR T peptides. AMP modification improves lymph node targeting of conjugated tumor immunogens and adjuvants, thereby coordinating a robust T cell-activating endogenous immune response.

View Article and Find Full Text PDF

Pancreatic and colorectal cancers are often KRAS mutated and are incurable when tumor DNA or protein persists or recurs after curative intent therapy. Cancer vaccine ELI-002 2P enhances lymph node delivery and immune response using amphiphile (Amph) modification of G12D and G12R mutant KRAS (mKRAS) peptides (Amph-Peptides-2P) together with CpG oligonucleotide adjuvant (Amph-CpG-7909). We treated 25 patients (20 pancreatic and five colorectal) who were positive for minimal residual mKRAS disease (ctDNA and/or serum tumor antigen) after locoregional treatment in a phase 1 study of fixed-dose Amph-Peptides-2P and ascending-dose Amph-CpG-7909; study enrollment is complete with patient follow-up ongoing.

View Article and Find Full Text PDF

The recent emergence of a causal link between Epstein-Barr virus (EBV) and multiple sclerosis has generated considerable interest in the development of an effective vaccine against EBV. Here we describe a vaccine formulation based on a lymph node targeting Amphiphile vaccine adjuvant, Amphiphile-CpG, admixed with EBV gp350 glycoprotein and an engineered EBV polyepitope protein that includes 20 CD8 T cell epitopes from EBV latent and lytic antigens. Potent gp350-specific IgG responses are induced in mice with titers >100,000 in Amphiphile-CpG vaccinated mice.

View Article and Find Full Text PDF

Despite the success of currently authorized vaccines for the reduction of severe COVID-19 disease risk, rapidly emerging viral variants continue to drive pandemic waves of infection, resulting in numerous global public health challenges. Progress will depend on future advances in prophylactic vaccine activity, including advancement of candidates capable of generating more potent induction of cross-reactive T cells and durable cross-reactive antibody responses. Here we evaluated an Amphiphile (AMP) adjuvant, AMP-CpG, admixed with SARS-CoV-2 Spike receptor binding domain (RBD) immunogen, as a lymph node-targeted protein subunit vaccine (ELI-005) in mice and non-human primates (NHPs).

View Article and Find Full Text PDF

The profound consequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mandate urgent development of effective vaccines. Here, we evaluated an Amphiphile (AMP) vaccine adjuvant, AMP-CpG, composed of diacyl lipid-modified CpG, admixed with the SARS-CoV-2 Spike-2 receptor binding domain protein as a candidate vaccine (ELI-005) in mice. AMP modification efficiently delivers CpG to lymph nodes, where innate and adaptive immune responses are generated.

View Article and Find Full Text PDF

Microneedle vaccines mimic several aspects of cutaneous pathogen invasion by targeting antigen to skin-resident dendritic cells and triggering local inflammatory responses in the skin, which are correlated with enhanced immune responses. Here, we tested whether control over vaccine delivery kinetics can enhance immunity through further mimicry of kinetic profiles present during natural acute infections. An approach for the fabrication of silk/poly(acrylic acid) (PAA) composite microneedles composed of a silk tip supported on a PAA base is reported.

View Article and Find Full Text PDF

Transcutaneous administration has the potential to improve therapeutics delivery, providing an approach that is safer and more convenient than traditional alternatives, while offering the opportunity for improved therapeutic efficacy through sustained/controlled drug release. To this end, we demonstrate a microneedle materials platform for rapid implantation of controlled-release polymer depots into the cutaneous tissue. Arrays of microneedles comprised of drug-loaded poly(lactide--glycolide) (PLGA) microparticles or solid PLGA tips were prepared with a supporting and rapidly water-soluble poly(acrylic acid) (PAA) matrix.

View Article and Find Full Text PDF

DNA vaccines have many potential benefits but have failed to generate robust immune responses in humans. Recently, methods such as in vivo electroporation have demonstrated improved performance, but an optimal strategy for safe, reproducible, and pain-free DNA vaccination remains elusive. Here we report an approach for rapid implantation of vaccine-loaded polymer films carrying DNA, immune-stimulatory RNA, and biodegradable polycations into the immune-cell-rich epidermis, using microneedles coated with releasable polyelectrolyte multilayers.

View Article and Find Full Text PDF

Here we introduce a new approach for transcutaneous drug delivery, using microneedles coated with stabilized lipid nanocapsules, for delivery of a model vaccine formulation. Poly(lactide-co-glycolide) microneedle arrays were coated with multilayer films via layer-by-layer assembly of a biodegradable cationic poly(β-amino ester) (PBAE) and negatively charged interbilayer-cross-linked multilamellar lipid vesicles (ICMVs). To test the potential of these nanocapsule-coated microneedles for vaccine delivery, we loaded ICMVs with a protein antigen and the molecular adjuvant monophosphoryl lipid A.

View Article and Find Full Text PDF

The ability to control the timing and order of release of different therapeutic drugs will play a pivotal role in improving patient care and simplifying treatment regimes in the clinic. The controlled sequential release of a broad range of small and macromolecules from thin film coatings offers a simple way to provide complex localized dosing in vivo. Here we show that it is possible to take advantage of the structure of certain nanomaterials to control release regimes from a scale of hours to months.

View Article and Find Full Text PDF