Publications by authors named "Peter C Andrews"

Background: Large-scale genetic studies of common human diseases have focused almost exclusively on the independent main effects of single-nucleotide polymorphisms (SNPs) on disease susceptibility. These studies have had some success, but much of the genetic architecture of common disease remains unexplained. Attention is now turning to detecting SNPs that impact disease susceptibility in the context of other genetic factors and environmental exposures.

View Article and Find Full Text PDF

Background: Bladder cancer is common disease with a complex etiology that is likely due to many different genetic and environmental factors. The goal of this study was to embrace this complexity using a bioinformatics analysis pipeline designed to use machine learning to measure synergistic interactions between single nucleotide polymorphisms (SNPs) in two genome-wide association studies (GWAS) and then to assess their enrichment within functional groups defined by Gene Ontology. The significance of the results was evaluated using permutation testing and those results that replicated between the two GWAS data sets were reported.

View Article and Find Full Text PDF

Here we introduce the multifactor dimensionality reduction (MDR) methodology and software package for detecting and characterizing epistasis in genetic association studies. We provide a general overview of the method and then highlight some of the key functions of the open-source MDR software package that is freely distributed. We end with a few examples of published studies of complex human diseases that have used MDR.

View Article and Find Full Text PDF

Simulation plays an essential role in the development of new computational and statistical methods for the genetic analysis of complex traits. Most simulations start with a statistical model using methods such as linear or logistic regression that specify the relationship between genotype and phenotype. This is appealing due to its simplicity and because these statistical methods are commonly used in genetic analysis.

View Article and Find Full Text PDF

Background: Alzheimer's disease is the most common form of progressive dementia and there is currently no known cure. The cause of onset is not fully understood but genetic factors are expected to play a significant role. We present here a bioinformatics approach to the genetic analysis of grey matter density as an endophenotype for late onset Alzheimer's disease.

View Article and Find Full Text PDF

Background: It is increasingly clear that common human diseases have a complex genetic architecture characterized by both additive and nonadditive genetic effects. The goal of the present study was to determine whether patterns of both additive and nonadditive genetic associations aggregate in specific functional groups as defined by the Gene Ontology (GO).

Results: We first estimated all pairwise additive and nonadditive genetic effects using the multifactor dimensionality reduction (MDR) method that makes few assumptions about the underlying genetic model.

View Article and Find Full Text PDF