Publications by authors named "Peter Burback"

Considerable progress has been made toward elucidating the mechanism of Staphylococcus aureus aggregation in synovial fluid. In this study, aggregate morphology was assessed following incubation under several simulated postsurgical joint conditions. Using fluorescently labeled synovial fluid polymers, we show that aggregation occurs through two distinct mechanisms: (i) direct bridging between S.

View Article and Find Full Text PDF

Early bacterial survival in the postsurgical joint is still a mystery. Recently, synovial fluid-induced aggregation was proposed as a potential mechanism of bacterial protection upon entry into the joint. As synovial fluid is secreted back into the joint cavity following surgery, rapid fluctuations in synovial fluid concentrations, composition, and viscosity occur.

View Article and Find Full Text PDF

Rapid synovial fluid-induced aggregation of Staphylococcus aureus is currently being investigated as an important factor in the establishment of periprosthetic joint infections (PJIs). Pathogenic advantages of aggregate formation have been well documented , including recalcitrance to antibiotics and protection from host immune defenses. The objective of the present work was to determine the strain dependency of synovial fluid-induced aggregation by measuring the degree of aggregation of 21 clinical S.

View Article and Find Full Text PDF

Periprosthetic joint infection (PJI) occurring after artificial joint replacement is a major clinical issue requiring multiple surgeries and antibiotic interventions. is the common bacteria responsible for PJI. Recent in vitro research has shown that staphylococcal strains rapidly form free-floating aggregates in the presence of synovial fluid (SF) with biofilm-like resistance to antimicrobial agents.

View Article and Find Full Text PDF