Publications by authors named "Peter Brodfuehrer"

Multiple reports highlight the increasingly quantitative nature of biological research and the need to innovate means to ensure that students acquire quantitative skills. We present a tool to support such innovation. The Biological Science Quantitative Reasoning Exam (BioSQuaRE) is an assessment instrument designed to measure the quantitative skills of undergraduate students within a biological context.

View Article and Find Full Text PDF

Locomotor systems are often controlled by specialized cephalic neurons and undergo modulation by sensory inputs. In many species, dedicated brain regions initiate and maintain behavior and set the duration and frequency of the locomotor episode. In the leech, removing the entire head brain enhances swimming, but the individual roles of its components, the supra- and subesophageal ganglia, in the control of locomotion are unknown.

View Article and Find Full Text PDF

Juvenile rats have been reported to be more sensitive to the acute neurotoxic effects of the pyrethroid deltamethrin than adults. While toxicokinetic differences between juveniles and adults are documented, toxicodynamic differences have not been examined. Voltage-gated sodium channels, the primary targets of pyrethroids, are comprised of alpha and beta subunits, each of which have multiple isoforms that are expressed in a developmentally-regulated manner.

View Article and Find Full Text PDF

Higher-order projection interneurons that function in more than one behavior have been identified in a number of preparations. In this study, we document that stimulation of cell Tr1, a previously identified trigger interneuron for swimming in the medicinal leech, can also elicit the motor program for crawling in isolated nerve cords. We also show that motor choice is independent of the firing frequency of Tr1 and amount of spiking activity recorded extracellularly at three locations along the ventral nerve cord prior to Tr1 stimulation.

View Article and Find Full Text PDF

In this study we examined whether the foraging for artificial blood affected the behavioral responsiveness of leeches to electrical stimulation of the body wall. After foraging for artificial blood, electrical stimulation of the posterior end of the leech significantly increased the percentage of stimulation trials that elicited locomotory activity--swimming and crawling--compared to the behaviors elicited when leeches did not forage or foraged for normal saline. On the other hand, shortening always dominated the behavioral profile of the leech to anterior stimulation even after foraging for artificial blood.

View Article and Find Full Text PDF

One important goal of introductory biology laboratory experiences is to engage students directly in all steps in the process of scientific discovery. Even when laboratory experiences are built on principles discussed in the classroom, students often do not adequately apply this background to interpretation of results they obtain in lab. This disconnect has been described at the level of medical education (4), so it should not be surprising that educators have struggled with this same phenomenon at the undergraduate level.

View Article and Find Full Text PDF