Publications by authors named "Peter Bove"

Type II cells are the defenders of the alveolus. They produce surfactant to prevent alveolar collapse, they actively transport water to prevent filling of the air sacs that would otherwise prevent gas exchange, and they differentiate to type I epithelial cells. They are an indispensable component of functional lung tissue.

View Article and Find Full Text PDF

Alveolar type (AT)I and ATII cells are central to maintaining normal alveolar fluid homeostasis. When disrupted, they contribute to the pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome. Research on ATII cells has been limited by the inability to propagate primary cells in vitro to study their specific functional properties.

View Article and Find Full Text PDF

Traditional stem cell differentiation protocols make use of a variety of cytokines including growth factors (GFs) and inhibitors in an effort to provide appropriate signals for tissue specific differentiation. In this study, iPSC-derived type II pneumocytes (iPSC-ATII) as well as native isolated human type II pneumocytes (hATII) were differentiated toward a type I phenotype using a unique air-liquid interface (ALI) system that relies on a rotating apparatus that mimics in vivo respiratory conditions. A relatively homogenous population of alveolar type II-like cells from iPSC was first generated (iPSC-ATII cells), which had phenotypic properties similar to mature human alveolar type II cells.

View Article and Find Full Text PDF

The use of induced pluripotent stem cells (iPSCs) has been postulated to be the most effective strategy for developing patient-specific respiratory epithelial cells, which may be valuable for lung-related cell therapy and lung tissue engineering. We generated a relatively homogeneous population of alveolar epithelial type II (AETII) and type I (AETI) cells from human iPSCs that had phenotypic properties similar to those of mature human AETII and AETI cells. We used these cells to explore whether lung tissue can be regenerated in vitro.

View Article and Find Full Text PDF

Severe acute respiratory syndrome with high mortality rates (~50%) is associated with a novel group 2c betacoronavirus designated Middle East respiratory syndrome coronavirus (MERS-CoV). We synthesized a panel of contiguous cDNAs that spanned the entire genome. Following contig assembly into genome-length cDNA, transfected full-length transcripts recovered several recombinant viruses (rMERS-CoV) that contained the expected marker mutations inserted into the component clones.

View Article and Find Full Text PDF

Airway epithelia are continuously damaged by airborne pollutants, pathogens and allergens, and they rely on intrinsic mechanisms to restore barrier integrity. Epithelial repair is a multi-step process including cell migration into the wounded area, proliferation, differentiation and matrix deposition. Each step requires the secretion of various molecules, including growth factors, integrins and matrix metalloproteinases.

View Article and Find Full Text PDF

A balance sheet describing the integrated homeostasis of secretion, absorption, and surface movement of liquids on pulmonary surfaces has remained elusive. It remains unclear whether the alveolus exhibits an intra-alveolar ion/liquid transport physiology or whether it secretes ions/liquid that may communicate with airway surfaces. Studies employing isolated human alveolar type II (AT2) cells were utilized to investigate this question.

View Article and Find Full Text PDF

Acute airway inflammation is associated with enhanced production of nitric oxide (NO(.)) and altered airway epithelial barrier function, suggesting a role of NO(.) or its metabolites in epithelial permeability.

View Article and Find Full Text PDF

Matrix metalloproteases (MMPs) are Zn-containing endopeptidases involved in the degradation of extracellular matrix components and are typically secreted in a latent (pro-MMP) form and activated either by proteolytic or oxidative disruption of a conserved cysteine switch. Several recent studies have suggested that nitric oxide (NO) can contribute to the activation of MMPs, but the mechanisms involved are incompletely understood. We investigated the ability of NO to regulate the activation of (pro)MMP-9 using a variety of NO-donor compounds and characterized modifications of the cysteine switch using a synthetic peptide (PRCGVPDLGR) representing the cysteine switch domain of MMP-9.

View Article and Find Full Text PDF
Article Synopsis
  • * High NO concentrations significantly reduced cell migration and wound healing in bronchial epithelial cells by affecting key signaling pathways, including the inhibition of ERK1/2 and stabilization of HIF-1alpha.
  • * The induction of HIF-1alpha and activation of negative regulators like PAI-1 and p53 were linked to the impaired migration of epithelial cells, indicating that inflammatory NO levels impede epithelial repair mechanisms.
View Article and Find Full Text PDF

The airway epithelium is continuously subjected to environmental pollutants, airborne pathogens, and allergens and relies on several intrinsic mechanisms to maintain barrier integrity and to promote epithelial repair processes following injury. Here, we report a critical role for dual oxidase 1 (Duox1), a newly identified NADPH oxidase homolog within the tracheobronchial epithelium, in airway epithelial cell migration and repair following injury. Activation of Duox1 during epithelial injury is mediated by cellular release of ATP, which signals through purinergic receptors expressed on the epithelial cell surface.

View Article and Find Full Text PDF

The airway epithelium provides a protective barrier against inhaled environmental toxins and microorganisms, and epithelial injury initiates a number of processes to restore its barrier integrity, including activation of matrix metalloproteinases such as MMP-9 (92-kD gelatinase B). Airway epithelial cells continuously produce nitric oxide (NO), which has been linked to cell migration and MMP-9 regulation in several cell types, but the importance of epithelial NO in mediating airway epithelial repair or MMP-9 activation is unknown. Using primary or immortalized human bronchial epithelial cells, we demonstrate that low concentrations of NO promote epithelial cell migration and wound repair in an in vitro wound assay, which was associated with increased localized expression and activation of MMP-9.

View Article and Find Full Text PDF

Nitric oxide (NO(.-)) is produced by many diverse cell types as a cellular or intracellular signaling molecule, by the activation of nitric oxide synthases (NOSs). All three known NOS isoforms are expressed within the respiratory tract and mediate various airway functional properties such as airway smooth muscle tone, ciliary function, epithelial electrolyte transport, and innate host defense.

View Article and Find Full Text PDF

Background And Purpose: Increasing use of CT for evaluating neurologic disease may expose patients to considerable levels of ionizing radiation. We compared the image quality of low-mAs head CT scans with that of conventional nonenhanced scans.

Methods: Conventional head CT scans were obtained in 20 patients (all >65 years with history of non-CNS malignancy) by using a multidetector technique: 170 mA and 1-second scanning time (ie, 170 mAs), 140 kVp, table speed of 7.

View Article and Find Full Text PDF

Acute lung inflammation and injury were induced by intranasal instillation of lipopolysaccharide (LPS) in normal and type 2 nitric oxide synthase (NOS2)-deficient (NOS2-/-) C57BL/6 mice. LPS-induced increases in extravasated airway neutrophils and in lung lavage fluid of TNF-alpha and macrophage inflammatory protein-2 were markedly lower in NOS2-/- than in wild-type mice, indicating that NOS2-derived nitric oxide (NO.) participates in inflammatory cytokine production and neutrophil recruitment.

View Article and Find Full Text PDF