Publications by authors named "Peter Bossaerts"

Many everyday tasks require people to solve computationally complex problems. However, little is known about the effects of computational hardness on the neural processes associated with solving such problems. Here, we draw on computational complexity theory to address this issue.

View Article and Find Full Text PDF

The efficacy of pharmaceutical cognitive enhancers in everyday complex tasks remains to be established. Using the knapsack optimization problem as a stylized representation of difficulty in tasks encountered in daily life, we discover that methylphenidate, dextroamphetamine, and modafinil cause knapsack value attained in the task to diminish significantly compared to placebo, even if the chance of finding the optimal solution (~50%) is not reduced significantly. Effort (decision time and number of steps taken to find a solution) increases significantly, but productivity (quality of effort) decreases significantly.

View Article and Find Full Text PDF

The survival of human organisms depends on our ability to solve complex tasks in the face of limited cognitive resources. However, little is known about the factors that drive the complexity of those tasks. Here, building on insights from computational complexity theory, we quantify the computational hardness of cognitive tasks using a set of task-independent metrics related to the computational resource requirements of individual instances of a task.

View Article and Find Full Text PDF

We consider Theory of Mind (ToM), the ability to correctly predict the intentions of others. To an important degree, good ToM function requires abstraction from one's own particular circumstances. Here, we posit that such abstraction can be transferred successfully to other, non-social contexts.

View Article and Find Full Text PDF

Ecstatic epilepsy is a rare form of focal epilepsy in which the aura (beginning of the seizures) consists of a blissful state of mental clarity/feeling of certainty. Such a state has also been described as a "religious" or mystical experience. While this form of epilepsy has long been recognized as a temporal lobe epilepsy, we have accumulated evidence converging toward the location of the symptomatogenic zone in the dorsal anterior insula during the 10 last years.

View Article and Find Full Text PDF

Over the last 15 years, a revolution has been taking place in neuroscience, whereby models and methods of economics have led to deeper insights into the neurobiological foundations of human decision-making. These have revealed a number of widespread mis-conceptions, among others, about the role of emotions. Furthermore, the findings suggest that a purely behavior-based approach to studying decisions may miss crucial features of human choice long appreciated in biology, such as Pavlovian approach.

View Article and Find Full Text PDF

The exploration/exploitation tradeoff - pursuing a known reward vs. sampling from lesser known options in the hope of finding a better payoff - is a fundamental aspect of learning and decision making. In humans, this has been studied using multi-armed bandit tasks.

View Article and Find Full Text PDF

Modern theories of decision-making typically model uncertainty about decision options using the tools of probability theory. This is exemplified by the Savage framework, the most popular framework in decision-making research. There, decision-makers are assumed to choose from among available decision options as if they maximized subjective expected utility, which is given by the utilities of outcomes in different states weighted with subjective beliefs about the occurrence of those states.

View Article and Find Full Text PDF

Anterior insula (aIns) is thought to play a crucial role in rapid adaptation in an ever-changing environment. Mathematically, it is known to track risk and surprise. Modern theories of learning, however, assign a dominant role to prediction errors (PEs), not to risk and surprise.

View Article and Find Full Text PDF

The rationality principle postulates that decision-makers always choose the best action available to them. It underlies most modern theories of decision-making. The principle does not take into account the difficulty of finding the best option.

View Article and Find Full Text PDF

In inverse reinforcement learning an observer infers the reward distribution available for actions in the environment solely through observing the actions implemented by another agent. To address whether this computational process is implemented in the human brain, participants underwent fMRI while learning about slot machines yielding hidden preferred and non-preferred food outcomes with varying probabilities, through observing the repeated slot choices of agents with similar and dissimilar food preferences. Using formal model comparison, we found that participants implemented inverse RL as opposed to a simple imitation strategy, in which the actions of the other agent are copied instead of inferring the underlying reward structure of the decision problem.

View Article and Find Full Text PDF

Life presents us with problems of varying complexity. Yet, complexity is not accounted for in theories of human decision-making. Here we study instances of the knapsack problem, a discrete optimisation problem commonly encountered at all levels of cognition, from attention gating to intellectual discovery.

View Article and Find Full Text PDF

A recent study suggests that risk-taking decreases with age and that this may be related to dopamine-modulated changes in Pavlovian approach behavior, and not a reduction in the subjective value of incremental rewards as traditional models from economics and psychology would have claimed.

View Article and Find Full Text PDF

Our attitude toward risk plays a crucial role in influencing our everyday decision-making. Despite its importance, little is known about how human risk-preference can be modulated by observing risky behavior in other agents at either the behavioral or the neural level. Using fMRI combined with computational modeling of behavioral data, we show that human risk-preference can be systematically altered by the act of observing and learning from others' risk-related decisions.

View Article and Find Full Text PDF

Large-scale human interaction through, for example, financial markets causes ceaseless random changes in outcome variability, producing frequent and salient outliers that render the outcome distribution more peaked than the Gaussian distribution, and with longer tails. Here, we study how humans cope with this evolutionary novel leptokurtic noise, focusing on the neurobiological mechanisms that allow the brain, 1) to recognize the outliers as noise and 2) to regulate the control necessary for adaptive response. We used functional magnetic resonance imaging, while participants tracked a target whose movements were affected by leptokurtic noise.

View Article and Find Full Text PDF

For making decisions in everyday life we often have first to infer the set of environmental features that are relevant for the current task. Here we investigated the computational mechanisms underlying the evolution of beliefs about the relevance of environmental features in a dynamical and noisy environment. For this purpose we designed a probabilistic Wisconsin card sorting task (WCST) with belief solicitation, in which subjects were presented with stimuli composed of multiple visual features.

View Article and Find Full Text PDF

Consensus building in a group is a hallmark of animal societies, yet little is known about its underlying computational and neural mechanisms. Here, we applied a computational framework to behavioral and fMRI data from human participants performing a consensus decision-making task with up to five other participants. We found that participants reached consensus decisions through integrating their own preferences with information about the majority group members' prior choices, as well as inferences about how much each option was stuck to by the other people.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the "realization utility" theory, which suggests that investors gain satisfaction from realizing gains and losses, by using fMRI to monitor brain activity while subjects traded stocks.
  • Results show that participants displayed a strong disposition effect in trading, meaning they often held onto losing stocks while selling winners, despite this being an irrational strategy.
  • Brain activity in specific areas, such as the ventromedial prefrontal cortex and ventral striatum, correlated with trading behaviors and capital gains, supporting the realization utility theory and highlighting the usefulness of neural data in understanding investor decision-making.
View Article and Find Full Text PDF

Economic choices are largely determined by two principal elements, reward value (utility) and probability. Although nonlinear utility functions have been acknowledged for centuries, nonlinear probability weighting (probability distortion) was only recently recognized as a ubiquitous aspect of real-world choice behavior. Even when outcome probabilities are known and acknowledged, human decision makers often overweight low probability outcomes and underweight high probability outcomes.

View Article and Find Full Text PDF

The capacity for strategic thinking about the payoff-relevant actions of conspecifics is not well understood across species. We use game theory to make predictions about choices and temporal dynamics in three abstract competitive situations with chimpanzee participants. Frequencies of chimpanzee choices are extremely close to equilibrium (accurate-guessing) predictions, and shift as payoffs change, just as equilibrium theory predicts.

View Article and Find Full Text PDF

The ability to infer intentions of other agents, called theory of mind (ToM), confers strong advantages for individuals in social situations. Here, we show that ToM can also be maladaptive when people interact with complex modern institutions like financial markets. We tested participants who were investing in an experimental bubble market, a situation in which the price of an asset is much higher than its underlying fundamental value.

View Article and Find Full Text PDF

The neuroscience of human decision-making has focused on localizing brain activity correlating with decision variables and choice, most commonly using functional MRI (fMRI). Poor temporal resolution means these studies are agnostic in relation to how decisions unfold in time. Consequently, here we address the temporal evolution of neural activity related to encoding of risk using magnetoencephalography (MEG), and show modulations of electromagnetic power in posterior parietal and dorsomedial prefrontal cortex (DMPFC) which scale with both variance and skewness in a lottery, detectable within 500 ms following stimulus presentation.

View Article and Find Full Text PDF

Uncertainty is an inherent property of the environment and a central feature of models of decision-making and learning. Theoretical propositions suggest that one form, unexpected uncertainty, may be used to rapidly adapt to changes in the environment, while being influenced by two other forms: risk and estimation uncertainty. While previous studies have reported neural representations of estimation uncertainty and risk, relatively little is known about unexpected uncertainty.

View Article and Find Full Text PDF

To make adaptive choices, humans need to estimate the probability of future events. Based on a Bayesian approach, it is assumed that probabilities are inferred by combining a priori, potentially subjective, knowledge with factual observations, but the precise neurobiological mechanism remains unknown. Here, we study whether neural encoding centers on subjective posterior probabilities, and data merely lead to updates of posteriors, or whether objective data are encoded separately alongside subjective knowledge.

View Article and Find Full Text PDF

Contemporary computational accounts of instrumental conditioning have emphasized a role for a model-based system in which values are computed with reference to a rich model of the structure of the world, and a model-free system in which values are updated without encoding such structure. Much less studied is the possibility of a similar distinction operating at the level of Pavlovian conditioning. In the present study, we scanned human participants while they participated in a Pavlovian conditioning task with a simple structure while measuring activity in the human amygdala using a high-resolution fMRI protocol.

View Article and Find Full Text PDF