In Arabidopsis thaliana, phytochrome B (phyB) is the dominant receptor of photomorphogenic development under red light. Phytochrome B interacts with a set of downstream regulatory proteins, including PHYTOCHROME INTERACTING FACTOR 3 (PIF3). The interaction between PIF3 and photoactivated phyB leads to the rapid phosphorylation and degradation of PIF3 and also to the degradation of phyB, events which are required for proper photomorphogenesis.
View Article and Find Full Text PDFIn the course of evolution, plants have developed mechanisms that orient their organs toward the incoming light. At the seedling stage, positive phototropism is mainly regulated by phototropin photoreceptors in blue and UV wavelengths. Contrasting with this, we report that UV RESISTANCE LOCUS8 (UVR8) serves as the predominant photoreceptor of UV-B-induced phototropic responses in Arabidopsis () inflorescence stems.
View Article and Find Full Text PDFThe UV Resistance Locus 8 (UVR8) photoreceptor controls UV-B mediated photomorphogenesis in Arabidopsis. The aim of this work is to collect and characterize different molecular reporters of photomorphogenic UV-B responses. Browsing available transcriptome databases, we identified sets of genes responding specifically to this radiation and are controlled by pathways initiated from the UVR8 photoreceptor.
View Article and Find Full Text PDFThe Arabidopsis UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8) orchestrates the expression of hundreds of genes, many of which can be associated with UV-B tolerance. UV-B does not efficiently penetrate into tissues, yet UV-B regulates complex growth and developmental responses. To unravel to what extent and how UVR8 located in different tissues contributes to UV-B-induced responses, we expressed UVR8 fused to the YELLOW FLUORESCENT PROTEIN (YFP) under the control of tissue-specific promoters in a uvr8 null mutant background.
View Article and Find Full Text PDFOptimal timing of flowering in higher plants is crucial for successful reproduction and is coordinated by external and internal factors, including light and the circadian clock. In Arabidopsis, light-dependent stabilization of the rhythmically expressed CONSTANS (CO) is required for the activation of FLOWERING LOCUS T (FT), resulting in the initiation of flowering. Phytochrome A and cryptochrome photoreceptors stabilize CO in the evening by attenuating the activity of the CONSTITUTIVE PHOTOMORPHOGENIC 1-SUPPRESSOR OF PHYA-105 1 (COP1-SPA1) ubiquitin ligase complex, which promotes turnover of CO.
View Article and Find Full Text PDF