Publications by authors named "Peter Bast"

Matching blood flow to myocardial energy demand is vital for heart performance and recovery following ischemia. The molecular mechanisms responsible for transduction of myocardial energetic signals into reactive vasodilatation are, however, elusive. Adenylate kinase, associated with AMP signaling, is a sensitive reporter of the cellular energy state, yet the contribution of this phosphotransfer system in coupling myocardial metabolism with coronary flow has not been explored.

View Article and Find Full Text PDF

Gene knockout of the KCNJ11-encoded Kir6.2 ATP-sensitive K(+) (K(ATP)) channel implicates this stress-response element in the safeguard of cardiac homeostasis under imposed demand. K(ATP) channels are abundant in ventricular sarcolemma, where subunit expression appears to vary between the sexes.

View Article and Find Full Text PDF

Brief hypoxia or ischemia perturbs energy metabolism inducing paradoxically a stress-tolerant state, yet metabolic signals that trigger cytoprotection remain poorly understood. To evaluate bioenergetic rearrangements, control and hypoxic hearts were analyzed with 18O-assisted 31P NMR and 1H NMR spectroscopy. The 18O-induced isotope shift in the 31P NMR spectrum of CrP, betaADP and betaATP was used to quantify phosphotransfer fluxes through creatine kinase and adenylate kinase.

View Article and Find Full Text PDF

Modulation of mitochondrial respiratory chain, dehydrogenase, and nucleotide-metabolizing enzyme activities is fundamental to cellular protection. Here, we demonstrate that the potassium channel opener diazoxide, within its cardioprotective concentration range, modulated the activity of flavin adenine dinucleotide-dependent succinate dehydrogenase with an IC50 of 32 microM and reduced the rate of succinate-supported generation of reactive oxygen species (ROS) in heart mitochondria. 5-Hydroxydecanoic fatty acid circumvented diazoxide-inhibited succinate dehydrogenase-driven electron flow, indicating a metabolism-dependent supply of redox equivalents to the respiratory chain.

View Article and Find Full Text PDF

Although ischemic preconditioning induces bioenergetic tolerance and thereby remodels energy metabolism that is crucial for postischemic recovery of the heart, the molecular components associated with preservation of cellular energy production, transfer, and utilization are not fully understood. Here myocardial bioenergetic dynamics were assessed by (18)O-assisted (31)P-NMR spectroscopy in control or preconditioned hearts from wild-type (WT) or Kir6.2-knockout (Kir6.

View Article and Find Full Text PDF

Reaction to stress requires feedback adaptation of cellular functions to secure a response without distress, but the molecular order of this process is only partially understood. Here, we report a previously unrecognized regulatory element in the general adaptation syndrome. Kir6.

View Article and Find Full Text PDF

Deletion of the major adenylate kinase AK1 isoform, which catalyzes adenine nucleotide exchange, disrupts cellular energetic economy and compromises metabolic signal transduction. However, the consequences of deleting the AK1 gene on cardiac energetic dynamics and performance in the setting of ischemia-reperfusion have not been determined. Here, at the onset of ischemia, AK1 knockout mice hearts displayed accelerated loss of contractile force compared with wild-type controls, indicating reduced tolerance to ischemic stress.

View Article and Find Full Text PDF