Tail bleeding models are important tools in hemophilia research, specifically for the assessment of procoagulant effects. The tail vein transection (TVT) survival model has been preferred in many settings due to sensitivity to clinically relevant doses of FVIII, whereas other established models, such as the tail clip model, require higher levels of procoagulant compounds. To avoid using survival as an endpoint, we developed a TVT model establishing blood loss and bleeding time as endpoints and full anesthesia during the entire experiment.
View Article and Find Full Text PDFBackground: Following induced joint hemorrhage, hemophilia B results in the abnormal persistence of iron deposition, inflammation, and neovascularity of the synovial tissue, as well as deterioration of the bone articular surface and strength. Previously, we demonstrated that a factor IX (FIX) replacement protein with extended circulating FIX activity, glycoPEGylated FIX nonacog beta pegol (N9-GP), could improve synovial and osteochondral parameters in F9 knockout mice when administered after joint injury.
Objective: We explored the use of N9-GP prior to unilateral joint hemorrhage and compared to unmodified recombinant FIX (rFIX).
Wound healing requires interactions between coagulation, inflammation, angiogenesis, cellular migration, and proliferation. Healing in dermal wounds of hemophilia B mice is delayed when compared with hemostatically normal wild-type (WT) mice, with abnormal persistence of iron deposition, inflammation, and neovascularity. We observed healing following induced joint hemorrhage in WT and factor IX (FIX) knockout (FIX) mice, examining also parameters previously studied in an excisional skin wound model.
View Article and Find Full Text PDFFrequent infusions of intravenous factor VIII (FVIII) are required to prevent bleeding associated with hemophilia A. To reduce the treatment burden, recombinant FVIII with a longer half-life was developed without changing the protein structure. FVIII-polyethylene glycol (PEG) conjugates were prepared using an enzymatic process coupling PEG (ranging from 10 to 80 kDa) selectively to a unique O-linked glycan in the FVIII B-domain.
View Article and Find Full Text PDFTissue factor pathway inhibitor (TFPI) blocks thrombin generation via the extrinsic blood coagulation pathway. Because the severe bleeding in patients with hemophilia occurs from deficiency of intrinsic blood coagulation pathway factor VIII or IX, pharmacological agents that inactivate TFPI and, therefore, restore thrombin generation via the extrinsic pathway, are being developed for treatment of hemophilia. Murine models of combined TFPI and factor VIII deficiency were used to examine the impact of TFPI deficiency on bleeding and clotting in hemophilia.
View Article and Find Full Text PDFObjective: To compare the performance of five risk models (Diamond-Forrester, the updated Diamond-Forrester, Morise, Duke, and a new model designated COronary Risk SCORE (CORSCORE) in predicting significant coronary artery disease (CAD) in patients with chest pain suggestive of stable angina pectoris.
Methods: Retrospective cohort for creation of CORSCORE by means of logistic regression analysis. Prospective cohort for validation of the five risk models using receiver operating characteristics (ROC) curve analysis, net reclassification improvement (NRI), and integrated discrimination improvement (IDI).
The pharmacokinetics and pharmacodynamics of 40k-PEG-rFVIIa, a GlycoPEGylated derivative of recombinant wild-type FVIIa, were compared with rFVIIa in rabbits. The procoagulant effect was determined as the weight of the clot formed in a defined segment of a facial vein. A time course study was conducted where ligation was made 10 minutes, 12 or 24 hours after i.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
September 2009
In addition to its primary role in regulating glucose production from the liver, glucagon has many other actions, reflected by the wide tissue distribution of the glucagon receptor (Gcgr). To investigate the role of glucagon in the regulation of insulin secretion and whole body glucose homeostasis in vivo, we generated mice overexpressing the Gcgr specifically on pancreatic beta-cells (RIP-Gcgr). In vivo and in vitro insulin secretion in response to glucagon and glucose was increased 1.
View Article and Find Full Text PDFObjectives: Growth hormone (GH) reduces the catabolic side effects of steroid treatment via effects on the amino-nitrogen metabolism. Ipamorelin is a synthetic peptide with GH releasing properties. We wished to study the metabolic effects of Ipamorelin and GH on selected hepatic measures of alpha-amino-nitrogen conversion during steroid-induced catabolism.
View Article and Find Full Text PDFAn automated system for registration of tail bleeding in rats using a camera and a user-designed PC-based software program has been developed. The live and processed images are displayed on the screen and are exported together with a text file for later statistical processing of the data allowing calculation of e.g.
View Article and Find Full Text PDFObjective: The purpose of the present study was to examine the metabolic effects of a specific histamine H(3) receptor antagonist, the cinnamic amide NNC 0038-0000-1202 (NNC 38-1202).
Research Methods And Procedures: Effects of NNC 38-1202 on paraventricular levels of histamine and acute effects on food intake were followed in normal rats, whereas effects on body weight homeostasis and lipid metabolism were studied in a rat model of diet-induced obesity (DIO).
Results: NNC 38-1202, administered as single oral doses of 15 and 30 mg/kg, significantly (p < 0.
The growth hormone (GH) and insulin-like growth factor I (IGF-I) axis were studied in streptozotocin (STZ) diabetic and nondiabetic female mice following intravenous (IV) injection of the GH secretagogue (GHS) ipamorelin or saline. On day 14, blood samples were obtained before and 10 minutes after the injection. Livers were removed and frozen for determination of the mRNA expressions of the GH receptor, GH-binding protein, and IGF-I, and hepatic IGF-I peptide.
View Article and Find Full Text PDF