Lanthanide complexes based on bis(amides) of diethylenetriaminepentaacetic acid with thiol functionalities are modified with 2,2'-dipyridyl disulfide to give activated complexes that can selectively react with thiol-functionalized complexes to form heterometallic lanthanide macrocycles. The preparation and full characterization of the polyaminocarboxylate ligands N,N''-bis[p-thiophenyl(aminocarbonyl)]diethylenetriamine-N,N',N''-triacetic acid (H(3)L(x)) and the activated N,N''-bis[p-(pyridyldithio)[phenyl(aminocarbonyl)]]diethylenetriamine-N,N',N''-triacetic acid (H(3)L(y)) and the complexes LaL(x), NdL(x), SmL(x), EuL(x), GdL(x), DyL(x), TbL(x), ErL(x), and YbL(x) are reported. The luminescence properties of the LnL(x) complexes emitting in the visible (where Ln = Dy(3+), Tb(3+), Eu(3+), and Sm(3+)) are examined by steady-state and time-resolved photoluminescence, and the triplet state energy level of GdL(x) was estimated to be 24 100 cm(-1) from the 0-0 band of the 77 K phosphorescence spectrum.
View Article and Find Full Text PDFIn this paper we demonstrate that the effect of aromatic C--F substitution in ligands does not always abide by conventional wisdom for ligand design to enhance sensitisation for visible lanthanide emission, in contrast with NIR emission for which the same effect coupled with shell formation leads to unprecedented long luminescence lifetimes. We have chosen an imidodiphosphinate ligand, N-{P,P-di(pentafluorophinoyl)}-P,P-dipentafluorophenylphosphinimidic acid (HF20tpip), to form ideal fluorinated shells about all visible- and NIR-emitting lanthanides. The shell, formed by three ligands, comprises twelve fully fluorinated aryl sensitiser groups, yet no-high energy X--H vibrations that quench lanthanide emission.
View Article and Find Full Text PDFNear-infrared emitting complexes of Nd(III), Er(III), and Yb(III) based on hexacoordinate lanthanide ions with an aryl functionalized imidodiphosphinate ligand, tpip, have been synthesized and fully characterized. Three tpip ligands form a shell around the lanthanide with the ligand coordinating via the two oxygens leading to neutral complexes, Ln(tpip)3. In the X-ray crystal structures of Er(III) and Nd(III) complexes there is evidence of CH-pi interactions between the phenyl groups.
View Article and Find Full Text PDFThe potentially pentadentate ligand 2,6-bis[N-(2'-pyridylmethyl)carbamyl]pyridine (H2L1), readily prepared from reaction of a diester of pyridine-2,6-dicarboxylic acid (H2dipic) and 2-aminomethylpyridine (ampy), shows limited tendency to form 1:1 M:L complexes with labile metal ions, although [CuL1] and [NiL1] were observed as minor species, the latter characterized by a crystal structure analysis. A mononuclear complex formed with inert Co(III) was characterized by a crystal structure as the neutral 1:2 complex [Co(L1)(HL1)] with two ligands acting as tridentate ligands, one coordinated by the central pyridine and its two flanking deprotonated amido groups, and the other by the central pyridine, one amido and one terminal pyridine group, with the remaining poorly coordinating protonated amide remaining unbound along with other terminal pyridine groups. Fe(III) is known to form a symmetrical 1:2 complex, but that complex is anionic due to binding of all four deprotonated amido groups; the unsymmetrical neutral Co(III) complex converts into a symmetrical anionic species only on heating for hours in aqueous base in the presence of activated carbon.
View Article and Find Full Text PDFThe bis(beta-diketone) ligands 1,3-bis(3-phenyl-3-oxopropanoyl)benzene, H(2)L(1) and 1,3-bis(3-phenyl-3-oxopropanoyl) 5-ethoxy-benzene, H(2)L(2), have been prepared for the examination of dinuclear lanthanide complex formation and investigation of their properties as sensitizers for lanthanide luminescence. The ligands bear two conjugated diketonate binding sites linked by a 1,3-phenylene spacer. The ligands bind to lanthanide(III) or yttrium(III) ions to form neutral homodimetallic triple stranded complexes [M(2)L(1)(3)] where M = Eu, Nd, Sm, Y, Gd and [M(2)L(2)(3)], where M = Eu, Nd or anionic quadruple-stranded dinuclear lanthanide units, [Eu(2)L(1)(4)](2-).
View Article and Find Full Text PDFLuminescent Ln-Pt2 metallohairpin complexes have been developed, and their intercalative recognition with DNA has been demonstrated with linear dichroism spectroscopy. The heterotrimetallic complexes were formed in a one-step reaction, by assembly of an aminopolycarboxylate ligand, a platinum terpyridine unit, and the lanthanide salt. The metallohairpin complexes bear a neutral lanthanide moiety and two positively charged platinum-containing intercalating units.
View Article and Find Full Text PDF