Publications by authors named "Peter B Adler"

Decades of empirical ecological research have focused on understanding ecological dynamics at local scales. Remote sensing products can help to scale-up ecological understanding to support management actions that need to be implemented across large spatial extents. This new avenue for remote sensing applications requires careful consideration of sources of potential bias that can lead to spurious causal relationships.

View Article and Find Full Text PDF

One strand of modern coexistence theory (MCT) partitions invader growth rates (IGR) to quantify how different mechanisms contribute to species coexistence, highlighting fluctuation-dependent mechanisms. A general conclusion from the classical analytic MCT theory is that coexistence mechanisms relying on temporal variation (such as the temporal storage effect) are generally less effective at promoting coexistence than mechanisms relying on spatial or spatiotemporal variation (primarily growth-density covariance). However, the analytic theory assumes continuous population density, and IGRs are calculated for infinitesimally rare invaders that have infinite time to find their preferred habitat and regrow, without ever experiencing intraspecific competition.

View Article and Find Full Text PDF

Local adaptation may facilitate range expansion during invasions, but the mechanisms promoting destructive invasions remain unclear. Cheatgrass (), native to Eurasia and Africa, has invaded globally, with particularly severe impacts in western North America. We sequenced 307 genotypes and conducted controlled experiments.

View Article and Find Full Text PDF

Exotic annual grass invasions in water-limited systems cause degradation of native plant and animal communities and increased fire risk. The life history of invasive annual grasses allows for high sensitivity to interannual variability in weather. Current distribution and abundance models derived from remote sensing, however, provide only a coarse understanding of how species respond to weather, making it difficult to anticipate how climate change will affect vulnerability to invasion.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how disturbances in dryland areas affect productivity in relation to annual precipitation, which is crucial for understanding global carbon sinks.
  • Using data from over 5600 km of natural gas pipeline corridors in North American drylands, researchers found that disturbances can reduce average annual production by 6 to 29% and significantly increase sensitivity to precipitation changes.
  • The research indicates that more severe disturbances lead to a shift from woody to herbaceous vegetation and may intensify the impacts of increasing precipitation variability on net primary productivity.
View Article and Find Full Text PDF

The global biodiversity crisis has stimulated decades of research on three themes: species coexistence, biodiversity-ecosystem functioning relationships (BEF), and biodiversity-ecosystem functional stability relationships (BEFS). However, studies on these themes are largely independent, creating barriers to an integrative understanding of the causes and consequences of biodiversity. Here we review recent progress towards mechanistic integration of coexistence, BEF, and BEFS.

View Article and Find Full Text PDF

AbstractMany potential mechanisms promote species coexistence, but we know little about their relative importance. To compare multiple mechanisms, we modeled a two-trophic planktonic food web based on mechanistic species interactions and empirically measured species traits. We simulated thousands of possible communities under realistic and altered interaction strengths to assess the relative importance of three potential drivers of phytoplankton and zooplankton species richness: resource-mediated coexistence mechanisms, predator-prey interactions, and trait trade-offs.

View Article and Find Full Text PDF

Causal effects of biodiversity on ecosystem functions can be estimated using experimental or observational designs - designs that pose a tradeoff between drawing credible causal inferences from correlations and drawing generalizable inferences. Here, we develop a design that reduces this tradeoff and revisits the question of how plant species diversity affects productivity. Our design leverages longitudinal data from 43 grasslands in 11 countries and approaches borrowed from fields outside of ecology to draw causal inferences from observational data.

View Article and Find Full Text PDF

Recent studies have shown the potential for negative plant-soil feedbacks (PSFs) to promote stable coexistence, but have not quantified the stabilizing effect relative to other coexistence mechanisms. We conducted a field experiment to test the role of PSFs in stabilizing coexistence among four dominant sagebrush steppe species that appear to coexist stably, based on previous work with observational data and models. We then integrated the effects of PSF treatments on focal species across germination, survival, and first-year growth.

View Article and Find Full Text PDF

Rapid climate change may exceed ecosystems' capacities to respond through processes including phenotypic plasticity, compositional turnover and evolutionary adaption. However, consequences of the resulting climate disequilibria for ecosystem functioning are rarely considered in projections of climate change impacts. Combining statistical models fit to historical climate data and remotely-sensed estimates of herbaceous net primary productivity with an ensemble of climate models, we demonstrate that assumptions concerning the magnitude of climate disequilibrium are a dominant source of uncertainty: models assuming maximum disequilibrium project widespread decreases in productivity in the western US by 2100, while models assuming minimal disequilibrium project productivity increases.

View Article and Find Full Text PDF

A major goal in ecology is to make generalizable predictions of organism responses to environmental variation based on their traits. However, straightforward relationships between traits and fitness are rare and likely to vary with environmental context. Characterizing how traits mediate demographic responses to the environment may enhance the predictions of organism responses to global change.

View Article and Find Full Text PDF

Nutrient enrichment can simultaneously increase and destabilise plant biomass production, with co-limitation by multiple nutrients potentially intensifying these effects. Here, we test how factorial additions of nitrogen (N), phosphorus (P) and potassium with essential nutrients (K+) affect the stability (mean/standard deviation) of aboveground biomass in 34 grasslands over 7 years. Destabilisation with fertilisation was prevalent but was driven by single nutrients, not synergistic nutrient interactions.

View Article and Find Full Text PDF

The data set covers a 101-yr period (1915-2016) of quadrat-based plant sampling at the Jornada Experimental Range in southern New Mexico. At each sampling event, a pantograph was used to record the location and perimeter of living plants within permanent quadrats. Basal area was recorded for perennial grass species, canopy cover area was recorded for shrub species, and all other perennial species were recorded as point data.

View Article and Find Full Text PDF

The effects of altered nutrient supplies and herbivore density on species diversity vary with spatial scale, because coexistence mechanisms are scale dependent. This scale dependence may alter the shape of the species-area relationship (SAR), which can be described by changes in species richness (S) as a power function of the sample area (A): S = cA , where c and z are constants. We analysed the effects of experimental manipulations of nutrient supply and herbivore density on species richness across a range of scales (0.

View Article and Find Full Text PDF

Dryland net primary productivity (NPP) is sensitive to temporal variation in precipitation (PPT), but the magnitude of this 'temporal sensitivity' varies spatially. Hypotheses for spatial variation in temporal sensitivity have often emphasized abiotic factors, such as moisture limitation, while overlooking biotic factors, such as vegetation structure. We tested these hypotheses using spatiotemporal models fit to remote-sensing data sets to assess how vegetation structure and climate influence temporal sensitivity across five dryland ecoregions of the western USA.

View Article and Find Full Text PDF

Selecting among competing statistical models is a core challenge in science. However, the many possible approaches and techniques for model selection, and the conflicting recommendations for their use, can be confusing. We contend that much confusion surrounding statistical model selection results from failing to first clearly specify the purpose of the analysis.

View Article and Find Full Text PDF

An urgent challenge facing biologists is predicting the regional-scale population dynamics of species facing environmental change. Biologists suggest that we must move beyond predictions based on phenomenological models and instead base predictions on underlying processes. For example, population biologists, evolutionary biologists, community ecologists and ecophysiologists all argue that the respective processes they study are essential.

View Article and Find Full Text PDF

Human activities are enriching many of Earth's ecosystems with biologically limiting mineral nutrients such as nitrogen (N) and phosphorus (P). In grasslands, this enrichment generally reduces plant diversity and increases productivity. The widely demonstrated positive effect of diversity on productivity suggests a potential negative feedback, whereby nutrient-induced declines in diversity reduce the initial gains in productivity arising from nutrient enrichment.

View Article and Find Full Text PDF

Pande et al. (2020) point out that persistence time can decrease even as invader growth rates (IGRs) increase, which potentially undermines modern coexistence theory. However, because persistence time increases rapidly with system size only when IGR > 0, to understand how any real community persists, we should first identify the mechanisms producing positive IGR.

View Article and Find Full Text PDF

Generalizing the effect of traits on performance across species may be achievable if traits explain variation in population fitness. However, testing relationships between traits and vital rates to infer effects on fitness can be misleading. Demographic trade-offs can generate variation in vital rates that yield equal population growth rates, thereby obscuring the net effect of traits on fitness.

View Article and Find Full Text PDF