Publications by authors named "Peter Ayre"

Introduction: Left ventricular assist devices are crucial in rehabilitation of patients with end-stage heart failure. Whether cardiopulmonary function is enhanced with higher pump output is unknown.

Methods: 10 patients (aged 39±16 years, mean±SD) underwent monitored adjustment of pump speed to determine minimum safe low speed and maximum safe high speed at rest.

View Article and Find Full Text PDF

A heart-pump interaction model has been developed based on animal experimental measurements obtained with a rotary blood pump in situ. Five canine experiments were performed to investigate the interaction between the cardiovascular system and the implantable rotary blood pump over a wide range of operating conditions, including variations in cardiac contractility and heart rate, systemic vascular resistance (SVR), and total blood volume (V(total) ). It was observed in our experiments that SVR decreased with increasing mean pump speed under the healthy condition, but was relatively constant during the speed ramp study under reduced cardiac contractility conditions.

View Article and Find Full Text PDF

Numerical models, able to simulate the response of the human cardiovascular system (CVS) in the presence of an implantable rotary blood pump (IRBP), have been widely used as a predictive tool to investigate the interaction between the CVS and the IRBP under various operating conditions. The present study investigates the effect of alterations in the model parameter values, that is, cardiac contractility, systemic vascular resistance, and total blood volume on the efficiency of rotary pump assistance, using an optimized dynamic heart-pump interaction model previously developed in our laboratory based on animal experimental measurements obtained from five canines. The effect of mean pump speed and the circulatory perturbations on left and right ventricular pressure volume loops, mean aortic pressure, mean cardiac output, pump assistance ratio, and pump flow pulsatility from both the greyhound experiments and model simulations are demonstrated.

View Article and Find Full Text PDF

Third-generation continuous-flow left ventricular assist devices (LVAD) provide reduced pulsatility flow. We examined the safe working range for LVAD pump speed and the effect on pump output and cardiac function in 13 stable outpatients with VentrAssist-LVAD (Ventracor Ltd, Australia). Pump speed was decreased from a baseline mean of 2,073 ± 86 revolutions per minute (RPM, with corresponding mean flow of 5.

View Article and Find Full Text PDF

Responses of four rotary blood pumps (Incor, Heartmate II, Heartware, and Duraheart) at a single speed setting to changes in preload and afterload were assessed using the human left ventricle as a benchmark for comparison. Data for the rotary pumps were derived from pressure flow relations reported in the literature while the natural heart was characterized by the Frank-Starling curve adjusted to fit outputs at different afterloads reported in the literature. Preload sensitivity (mean ± SD) for all pumps at all afterloads tested was 0.

View Article and Find Full Text PDF

A control algorithm for an implantable centrifugal rotary blood pump (RBP) based on a noninvasive indicator of the implant recipient's activity level has been proposed and evaluated in a software simulation environment. An activity level index (ALI)-derived from a noninvasive estimate of heart rate and the output of a triaxial accelerometer-forms the noninvasive indicator of metabolic energy expenditure. Pump speed is then varied linearly according to the ALI within a defined range.

View Article and Find Full Text PDF

Background: The VentrAssist (VA) is a novel, continuous flow left ventricular assist device (LVAD). The purpose of this trial was to investigate the safety and efficacy of the VA in elderly patients with end-stage heart failure.

Methods: In this prospective trial, patients requiring circulatory support either as destination therapy (DT) or as a bridge to transplant (BTT) were implanted with a VA device.

View Article and Find Full Text PDF

A noninvasive approach to the task of pulsatile flow estimation in an implantable rotary blood pump (iRBP) has been proposed. Employing six fluid solutions representing a range of viscosities equivalent to 20-50% blood hematocrit (HCT), pulsatile flow data was acquired from an in vitro mock circulatory loop. The entire operating range of the pump was examined, including flows from -2 to 12 L/min.

View Article and Find Full Text PDF

With respect to rotary blood pumps used as left ventricular assist devices (LVADs), it is clinically important to control pump flow to avoid complications associated with over-or under-pumping of the native heart. By employing only the non-invasive observer of instantaneous pump impeller speed to assess flow dynamics, a number of physiologically significant pumping states may be detected. Based on a number of acute animal experiments, five such states were identified: regurgitant pump flow (PR), ventricular ejection (VE), non-opening of the aortic valve (ANO), and partial collapse (intermittent and continuous) of the ventricle wall (PVC-I and PVC-C).

View Article and Find Full Text PDF

An integral component in the development of a control strategy for implantable rotary blood pumps is the task of reliably detecting the occurrence of left ventricular collapse due to overpumping of the native heart. Using the noninvasive pump feedback signal of impeller speed, an approach to distinguish between overpumping (or ventricular collapse) and the normal pumping state has been developed. Noninvasive pump signals from 10 human pump recipients were collected, and the pumping state was categorized as either normal or suction, based on expert opinion aided by transesophageal echocardiographic images.

View Article and Find Full Text PDF

Methods of speed control for implantable rotary blood pumps (iRBPs) are vital for providing implant recipients with sufficient blood flow to cater for their physiological requirements. The detection of pumping states that reflect the physiological state of the native heart forms a major component of such a control method. Employing data from a number of acute animal experiments, five such pumping states have been previously identified: regurgitant pump flow, ventricular ejection (VE), nonopening of the aortic valve (ANO), and partial collapse (intermittent [PVC-I] and continuous [PVC-C]) of the ventricle wall.

View Article and Find Full Text PDF

The effect of blood hematocrit (HCT) on a noninvasive flow estimation algorithm was examined in a centrifugal implantable rotary blood pump (iRBP) used for ventricular assistance. An average flow estimator, based on three parameters, input electrical power, pump speed, and HCT, was developed. Data were collected in a mock loop under steady flow conditions for a variety of pump operating points and for various HCT levels.

View Article and Find Full Text PDF

In a clinical setting it is necessary to control the speed of rotary blood pumps used as left ventricular assist devices to prevent possible severe complications associated with over- or underpumping. The hypothesis is that by using only the noninvasive measure of instantaneous pump impeller speed to assess flow dynamics, it is possible to detect physiologically significant pumping states (without the need for additional implantable sensors). By varying pump speed in an animal model, five such states were identified: regurgitant pump flow, ventricular ejection (VE), nonopening of the aortic valve over the cardiac cycle (ANO), and partial collapse (intermittent and continuous) of the ventricle wall (PVC-I and PVC-C).

View Article and Find Full Text PDF

The VentrAssist device left ventricular assist system, designed for permanent implantation, is a novel centrifugal pump with a hydrodynamically suspended rotor. The first human implant was into a 72-year-old man with New York Heart Association (NYHA) class IV heart failure due to idiopathic dilated cardiomyopathy. The implant and recovery were uneventful, and the patient survives at 17 months, is NYHA class II, and lives at home.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionqnq97tp431e4ean054fgegho6272oc8q): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once