Proc Natl Acad Sci U S A
March 2024
The chronology and phylogeny of bacterial evolution are difficult to reconstruct due to a scarce fossil record. The analysis of bacterial genomes remains challenging because of large sequence divergence, the plasticity of bacterial genomes due to frequent gene loss, horizontal gene transfer, and differences in selective pressure from one locus to another. Therefore, taking advantage of the rich and rapidly accumulating genomic data requires accurate modeling of genome evolution.
View Article and Find Full Text PDFDuring cellular processes such as differentiation or response to external stimuli, cells exhibit dynamic changes in their gene expression profiles. Single-cell RNA sequencing (scRNA-seq) can be used to investigate these dynamic changes. To this end, cells are typically ordered along a pseudotemporal trajectory which recapitulates the progression of cells as they transition from one cell state to another.
View Article and Find Full Text PDFCerebral organoids exhibit broad regional heterogeneity accompanied by limited cortical cellular diversity despite the tremendous upsurge in derivation methods, suggesting inadequate patterning of early neural stem cells (NSCs). Here we show that a short and early Dual SMAD and WNT inhibition course is necessary and sufficient to establish robust and lasting cortical organoid NSC identity, efficiently suppressing non-cortical NSC fates, while other widely used methods are inconsistent in their cortical NSC-specification capacity. Accordingly, this method selectively enriches for outer radial glia NSCs, which cyto-architecturally demarcate well-defined outer sub-ventricular-like regions propagating from superiorly radially organized, apical cortical rosette NSCs.
View Article and Find Full Text PDFBackground: Segmental duplications (SDs) are long DNA sequences that are repeated in a genome and have high sequence identity. In contrast to repetitive elements they are often unique and only sometimes have multiple copies in a genome. There are several well-studied mechanisms responsible for segmental duplications: non-allelic homologous recombination, non-homologous end joining and replication slippage.
View Article and Find Full Text PDFHorizontal gene transfer (HGT) is an essential force in microbial evolution. Despite detailed studies on a variety of systems, a global picture of HGT in the microbial world is still missing. Here, we exploit that HGT creates long identical DNA sequences in the genomes of distant species, which can be found efficiently using alignment-free methods.
View Article and Find Full Text PDFHürthle cell carcinoma of the thyroid (HCC) is a form of thyroid cancer recalcitrant to radioiodine therapy that exhibits an accumulation of mitochondria. We performed whole-exome sequencing on a cohort of primary, recurrent, and metastatic tumors, and identified recurrent mutations in DAXX, TP53, NRAS, NF1, CDKN1A, ARHGAP35, and the TERT promoter. Parallel analysis of mtDNA revealed recurrent homoplasmic mutations in subunits of complex I of the electron transport chain.
View Article and Find Full Text PDFIt has long been suspected that the rate of mutation varies across the human genome at a large scale based on the divergence between humans and other species. However, it is now possible to directly investigate this question using the large number of de novo mutations (DNMs) that have been discovered in humans through the sequencing of trios. We investigate a number of questions pertaining to the distribution of mutations using more than 130,000 DNMs from three large datasets.
View Article and Find Full Text PDFWe envision the molecular evolution process as an information transfer process and provide a quantitative measure for information preservation in terms of the channel capacity according to the channel coding theorem of Shannon. We calculate Information capacities of DNA on the nucleotide (for non-coding DNA) and the amino acid (for coding DNA) level using various substitution models. We extend our results on coding DNA to a discussion about the optimality of the natural codon-amino acid code.
View Article and Find Full Text PDFEvents in primate evolution are often dated by assuming a constant rate of substitution per unit time, but the validity of this assumption remains unclear. Among mammals, it is well known that there exists substantial variation in yearly substitution rates. Such variation is to be expected from differences in life history traits, suggesting it should also be found among primates.
View Article and Find Full Text PDFSince the sequencing of large genomes, many statistical features of their sequences have been found. One intriguing feature is that certain subsequences are much more abundant than others. In fact, abundances of subsequences of a given length are distributed with a scale-free power-law tail, resembling properties of human texts, such as Zipf's law.
View Article and Find Full Text PDFFor several decades, sequence alignment has been a widely used tool in bioinformatics. For instance, finding homologous sequences with a known function in large databases is used to get insight into the function of nonannotated genomic regions. Very efficient tools like BLAST have been developed to identify and rank possible homologous sequences.
View Article and Find Full Text PDFBMC Bioinformatics
February 2016
Background: The sequencing of immunoglobulin (Ig) transcripts from single B cells yields essential information about Ig heavy:light chain pairing, which is lost in conventional bulk sequencing experiments. The previously limited throughput of single-cell approaches has recently been overcome by the introduction of multiple next-generation sequencing (NGS)-based platforms. Furthermore, single-cell techniques allow the assignment of additional data types (e.
View Article and Find Full Text PDFMuch evidence indicates that GC-biased gene conversion (gBGC) has a major impact on the evolution of mammalian genomes. However, a detailed quantification of the process is still lacking. The strength of gBGC can be measured from the analysis of derived allele frequency spectra (DAF), but this approach is sensitive to a number of confounding factors.
View Article and Find Full Text PDFMutations create variation in the population, fuel evolution and cause genetic diseases. Current knowledge about de novo mutations is incomplete and mostly indirect. Here we analyze 11,020 de novo mutations from the whole genomes of 250 families.
View Article and Find Full Text PDFA Yule tree is the result of a branching process with constant birth and death rates. Such a process serves as an instructive null model of many empirical systems, for instance, the evolution of species leading to a phylogenetic tree. However, often in phylogeny the only available information is the pairwise distances between a small fraction of extant species representing the leaves of the tree.
View Article and Find Full Text PDFThe genomes of many vertebrates show a characteristic variation in GC content. To explain its origin and evolution, mainly three mechanisms have been proposed: selection for GC content, mutation bias, and GC-biased gene conversion. At present, the mechanism of GC-biased gene conversion, i.
View Article and Find Full Text PDFThe positive-regulatory domain containing nine gene, PRDM9, which strongly associates with the location of recombination events in several vertebrates, is inferred to be inactive in the dog genome. Here, we address several questions regarding the control of recombination and its influence on genome evolution in dogs. First, we address whether the association between CpG islands (CGIs) and recombination hotspots is generated by lack of methylation, GC-biased gene conversion (gBGC), or both.
View Article and Find Full Text PDFGenome evolution is shaped by a multitude of mutational processes, including point mutations, insertions, and deletions of DNA sequences, as well as segmental duplications. These mutational processes can leave distinctive qualitative marks in the statistical features of genomic DNA sequences. One such feature is the match length distribution (MLD) of exactly matching sequence segments within an individual genome or between the genomes of related species.
View Article and Find Full Text PDFComput Biol Chem
December 2014
Specific molecular mechanisms may affect the pattern of mutation in particular regions, and therefore leaving a footprint or signature in the DNA of their activity. The common approach to identify these signatures is studying the frequency of substitutions. However, such an analysis ignores the important spatial information, which is important with regards to the mutation occurrence statistics.
View Article and Find Full Text PDFBackground: Segmental duplications (SDs) are not evenly distributed along chromosomes. The reasons for this biased susceptibility to SD insertion are poorly understood. Accumulation of SDs is associated with increased genomic instability, which can lead to structural variants and genomic disorders such as the Williams-Beuren syndrome.
View Article and Find Full Text PDFSingle-cell PCR and sequencing of full-length Ig heavy (Igh) and Igk and Igl light chain genes is a powerful tool to measure the diversity of antibody repertoires and allows the functional assessment of B-cell responses through direct Ig gene cloning and the generation of recombinant mAbs. However, the current methodology is not high-throughput compatible. Here we developed a two-dimensional bar-coded primer matrix to combine Igh and Igk/Igl chain gene single-cell PCR with next-generation sequencing for the parallel analysis of the antibody repertoire of over 46 000 individual B cells.
View Article and Find Full Text PDFMeiotic recombination is known to influence GC-content evolution in large regions of mammalian genomes by favoring the fixation of G and C alleles and increasing the rate of A/T to G/C substitutions. This process is known as GC-biased gene conversion (gBGC). Until recently, genome-wide measures of fine-scale recombination activity were unavailable in mice.
View Article and Find Full Text PDFThe genomes of many vertebrates show a characteristic heterogeneous distribution of GC content, the so-called GC isochore structure. The origin of isochores has been explained via the mechanism of GC-biased gene conversion (gBGC). However, although the isochore structure is declining in many mammalian genomes, the heterogeneity in GC content is being reinforced in the avian genome.
View Article and Find Full Text PDFRecently, an enrichment of identical matching sequences has been found in many eukaryotic genomes. Their length distribution exhibits a power law tail raising the question of what evolutionary mechanism or functional constraints would be able to shape this distribution. Here we introduce a simple and evolutionarily neutral model, which involves only point mutations and segmental duplications, and produces the same statistical features as observed for genomic data.
View Article and Find Full Text PDF