Optical injection locking generally occurs when light from a master laser is unidirectionally injected into a slave laser, such that the injected light overcomes spontaneous emission inside the cavity, and forces the slave laser to behave as a frequency copy of the master. Here, we study the limits of stability for optically pre-amplified optical injection locking in the case of large added noise on the input field and in the presence of a phase locked loop which minimizes the frequency offset between master and slave lasers. We present a set of modified rate equations which we use to describe the physics of the system near the limit of stable injection locking, and report on phase slips which occur due to injected noise momentarily destabilizing the system.
View Article and Find Full Text PDFThe low noise figure of phase-sensitive amplifiers (PSAs) is attractive for optically pre-amplified measurement and communication systems. However, a major practical implementation difficulty pertains to the requirement of phase-locked signal, idler, and pump waves. Previously, injection locking to a co-propagating weak pump pilot or tapping portions of the received signal (lossy) for carrier re-generation have been used.
View Article and Find Full Text PDFPhase and frequency noise originating from thermal fluctuations is commonly a limiting factor in integrated photonic cavities. To reduce this noise, one may drive a secondary "servo/cooling" laser into the blue side of a cavity resonance. Temperature fluctuations which shift the resonance will then change the amount of servo/cooling laser power absorbed by the device as the laser moves relatively out of or into the resonance, and thereby effectively compensate for the fluctuation.
View Article and Find Full Text PDFWe report on the realization of an active tunable wavelength division multiplexing (WDM) demultiplexer based on vectorial parametric amplification in a highly nonlinear bismuth-oxide fiber. The demultiplexing of a 10 Gbits/s WDM channel is demonstrated with little power penalty. The compact device integrates wavelength conversion and filtering functions while providing parametric gain.
View Article and Find Full Text PDFAll-optical wavelength conversion based on four-wave mixing attracts intense interest in many areas, especially in optical fiber communications, due to the advantages of femtosecond response, modulation-format transparency, and high flexibility in optical network management. In this paper, we present the first optical translation of 32-GBaud 16QAM signals with an integrated SiN nonlinear nanophotonic waveguide. An on-chip continuous-wave conversion efficiency of up to -0.
View Article and Find Full Text PDFWe demonstrate a method to generate a widely and arbitrarily tunable laser source with very narrow linewidth. By seeding a coupled-cavity microcomb with a highly coherent single-frequency laser and using injection locking of a Fabry-Perot laser to select a single output comb tone, a high power, high side mode suppression ratio output wave is obtained. The system is demonstrated across 1530 -1585 nm with a linewidth below 8 kHz, having 5 dBm output power and sidemode suppression of at least 60 dB.
View Article and Find Full Text PDFIn free-space optical communication links, the combining of optical signals from multiple apertures is a well-known method to collect more power for improved sensitivity or mitigation of atmospheric disturbances. However, for analog optical combining no detailed analysis has been made in cases when the optical signal power is very low (<-60 dBm) as would be the case in very long-haul free-space links. We present a theoretical and experimental study of analog coherent combining of noise-limited signals from multiple independent apertures by applying low frequency optical phase dithering to actively compensate the relative phases.
View Article and Find Full Text PDFThe throughput and reach in fiber-optic communication links are limited by in-line optical amplifier noise and the Kerr nonlinearity in the optical transmission fiber. Phase-sensitive amplifiers (PSAs) are capable of amplifying signals without adding excess noise and mitigating the impairments caused by the Kerr nonlinearity. However, the effectiveness of Kerr nonlinearity mitigation depends on the dispersion pre-compensation in each span.
View Article and Find Full Text PDFOptical amplifiers are essential in numerous photonic applications. Parametric amplifiers, relying on a nonlinear material to create amplification, are uniquely promising as they can amplify without generating excess noise. Here, we demonstrate amplification based on the third-order nonlinearity in a single chip while, in addition, reporting a noise figure significantly below the conventional quantum limit when operated in phase-sensitive mode.
View Article and Find Full Text PDFWe propose and implement a tunable, high power and narrow linewidth laser source based on a series of highly coherent tones from an electro-optic frequency comb and a set of 3 DFB slave lasers. We experimentally demonstrate approximately 1.25 THz (10 nm) of tuning within the C-Band centered at 192.
View Article and Find Full Text PDFWe quantify the maximum transmission reach for phase-insensitive amplifier (PIA) and phase-sensitive amplifier (PSA) links with different modulation formats and show that the maximum transmission reach increase (MTRI) when using PSAs compared to PIAs is enhanced for higher-order modulation formats. The higher-order modulation formats are more susceptible to smaller phase rotations from nonlinearities, and PSAs are efficient in mitigating these smaller phase distortions. Numerical simulations were performed for single- and multi-span PIA and PSA links with single and multiple wavelength channels.
View Article and Find Full Text PDFLight Sci Appl
September 2020
Space communication for deep-space missions, inter-satellite data transfer and Earth monitoring requires high-speed data connectivity. The reach is fundamentally dictated by the available transmission power, the aperture size, and the receiver sensitivity. A transition from radio-frequency links to optical links is now seriously being considered, as this greatly reduces the channel loss caused by diffraction.
View Article and Find Full Text PDFIn this paper, we investigate the enhancement of analog optical link performance with noiseless phase-sensitive fiber optical parametric amplifiers. The influence of different noise sources in the link impacts the quality of analog optical signals, especially with low optical signal power, which has not been investigated before. Theoretically, the increase in signal-to-noise ratio and spurious-free dynamic range can be up to ∼6 dB and ∼4 dB, respectively, if the noise figure of optical pre-amplifier drops 3 dB when the received optical power is less than -65 dBm.
View Article and Find Full Text PDFIn this paper, we propose and numerically investigate waveguide tapering to improve optical parametric amplification in integrated nonlinear SiN circuits. The phase matching condition of parametric amplification changes along the length of uniform SiN waveguides, due to the non-negligible propagation loss, potentially causing peak-gain wavelength shifts of more than 20 nm. By tapering the waveguide width along propagation, we can achieve a 2.
View Article and Find Full Text PDFFiber-optical networks are a crucial telecommunication infrastructure in society. Wavelength division multiplexing allows for transmitting parallel data streams over the fiber bandwidth, and coherent detection enables the use of sophisticated modulation formats and electronic compensation of signal impairments. Optical frequency combs can replace the multiple lasers used for the different wavelength channels.
View Article and Find Full Text PDFMicroresonator frequency combs (microcombs) are enabling new applications in frequency synthesis and metrology - from high-speed laser ranging to coherent optical communications. One critical parameter that dictates the performance of the microcomb is the optical quality factor (Q) of the microresonator. Microresonators fabricated in planar structures such as silicon nitride (SiN) allow for dispersion engineering and the possibility to monolithically integrate the microcomb with other photonic devices.
View Article and Find Full Text PDFPhase-sensitive optical parametric amplifiers (PSAs) can provide low-noise optical amplification while simultaneously mitigating nonlinear distortions caused by the Kerr effect. However, nonlinearity mitigation using PSAs is affected by link parameters, and imperfect link design results in residual nonlinear distortions. In this paper, we use first-order perturbation theory to describe these residual nonlinear distortions, and develop a way to mitigate them using a modified third-order Volterra nonlinear equalizer (VNLE) in the receiver.
View Article and Find Full Text PDFMaster-slave carrier recovery is a digital signal processing technique that uses correlated phase noise in multi-channel receivers to eliminate redundant carrier recovery blocks. In this paper we experimentally investigate the performance of master-slave carrier recovery for multicore fiber transmission in the presence of inter-channel nonlinear interference. Using a triple parallel loop setup we jointly receive three spatial channels in a 7-core fiber for transmission distances of up to 1600 km.
View Article and Find Full Text PDFWe present a low-complexity fully pilot-based digital signal processing (DSP) chain designed for high spectral efficiency optical transmission systems. We study the performance of the individual pilot algorithms in simulations before demonstrating transmission of a 51×24 Gbaud PM-64QAM superchannel over distances reaching 1000 km. We present an overhead optimization technique using the system achievable information rate to find the optimal balance between increased performance and throughput reduction from adding additional DSP pilots.
View Article and Find Full Text PDFSilicon nitride is a dielectric material widely used for applications in linear and nonlinear optics. It has an ultra-broad transparency window, low intrinsic loss, and a refractive index that allows for moderate optical field confinement in waveguides. The chemical composition of this material can be precisely set during the fabrication process, leading to an extra degree of freedom for tailoring the optical and mechanical properties of photonic chips.
View Article and Find Full Text PDFThe improved mitigation of self-phase modulation (SPM) induced nonlinear impairments by the use of a multi-span dispersion map optimization in 28 GBaud phase-sensitive amplifier (PSA) links is numerically investigated. We show that a four-span dispersion map optimized PSA link provides 2.1 times reach improvement over a single-span optimized PSA link with a total nonlinear phase shift tolerance increase from 2.
View Article and Find Full Text PDFWe demonstrate optical injection locking (OIL) at record low injection power of -65 dBm using EDFA-based pre-amplification and an electrical phase locked loop (PLL). Investigating the phase noise characteristics of OIL, we find that at low injection powers the slave laser linewidth and injection ratio strongly influence the phase noise of the locked slave output. By introducing an EDFA pre-amplifier, the minimum locking power for OIL is reduced.
View Article and Find Full Text PDFWe demonstrate long-haul transmission using a hybrid amplifier approach combining distributed Raman amplification and lumped phase-sensitive amplification. Aside from the well-known resulting SNR improvement, distributed Raman amplification is included in an effort to improve the nonlinearity mitigation capability of the phase-sensitive amplifiers. When changing from phase-insensitive operation to phase-sensitive operation in a link employing distributed Raman amplification, the transmission reach at BER = 10 is increased from 15 to 44 spans of length 81 km while simultaneously increasing the optimal launch power by 2 dB.
View Article and Find Full Text PDFThe original version of this Article incorrectly listed an affiliation of Samuel L.I. Olsson as 'Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, Tallinn 19086, Estonia', instead of the correct 'Present address: Nokia Bell Labs, 791 Holmdel Road, Holmdel, NJ 07733, USA'.
View Article and Find Full Text PDFThe capacity and reach of long-haul fiber optical communication systems is limited by in-line amplifier noise and fiber nonlinearities. Phase-sensitive amplifiers add 6 dB less noise than conventional phase-insensitive amplifiers, such as erbium-doped fiber amplifiers, and they can provide nonlinearity mitigation after each span. Realizing a long-haul transmission link with in-line phase-sensitive amplifiers providing simultaneous low-noise amplification and nonlinearity mitigation is challenging and to date no such transmission link has been demonstrated.
View Article and Find Full Text PDF