Mounting evidence indicates that immunogenic therapies engaging the unfolded protein response (UPR) following endoplasmic reticulum (ER) stress favor proficient cancer cell-immune interactions, by stimulating the release of immunomodulatory/proinflammatory factors by stressed or dying cancer cells. UPR-driven transcription of proinflammatory cytokines/chemokines exert beneficial or detrimental effects on tumor growth and antitumor immunity, but the cell-autonomous machinery governing the cancer cell inflammatory output in response to immunogenic therapies remains poorly defined. Here, we profiled the transcriptome of cancer cells responding to immunogenic or weakly immunogenic treatments.
View Article and Find Full Text PDFThe choriogenin H - EGFP transgenic medaka (Oryzias melastigma) has been used to test estrogenic substances and quantify estrogenic activity into 17β-estradiol (E2) equivalency (EEQ). The method uses 8 eleutheroembryos in 2 ml solution per well and 3 wells per treatment in 24-well plates at 26 ± 1 °C for 24 ± 2 h, with subsequent measurements of induced GFP signal intensity. EEQ measurements are calculated using a E2 probit regression model with a coefficient of determination (R) > 0.
View Article and Find Full Text PDFWith the aim to explore the possibility to generate a zebrafish model of renal fibrosis, in this study the fibrogenic renal effect of aristolochic acid I (AAI) after immersion was assessed. This compound is highly nephrotoxic able to elicit renal fibrosis after exposure of rats and humans. Our results reveal that larval zebrafish at 15 days dpf (days post-fertilization) exposed for 8 days to 0.
View Article and Find Full Text PDFThe structural and functional similarity of the larval zebrafish pronephros to the human nephron, together with the recent development of easier and more precise techniques to manipulate the zebrafish genome have motivated many researchers to model human renal diseases in the zebrafish. Over the last few years, great advances have been made, not only in the modeling techniques of genetic diseases in the zebrafish, but also in how to validate and exploit these models, crossing the bridge towards more informative explanations of disease pathophysiology and better designed therapeutic interventions in a cost-effective in vivo system. Here, we review the significant progress in these areas giving special attention to the renal phenotype evaluation techniques.
View Article and Find Full Text PDFThe human ubiquitous protein cystinosin is responsible for transporting the disulphide amino acid cystine from the lysosomal compartment into the cytosol. In humans, Pathogenic mutations of CTNS lead to defective cystinosin function, intralysosomal cystine accumulation and the development of cystinosis. Kidneys are initially affected with generalized proximal tubular dysfunction (renal Fanconi syndrome), then the disease rapidly affects glomeruli and progresses towards end stage renal failure and multiple organ dysfunction.
View Article and Find Full Text PDFNanomaterials are being extensively produced and applied in society. Human and environmental exposures are, therefore, inevitable and so increased attention is being given to nanotoxicity. While silica nanoparticles (NP) are one of the top five nanomaterials found in consumer and biomedical products, their toxicity profile is poorly characterized.
View Article and Find Full Text PDFRecently, the photomotor response (PMR) of zebrafish embryos was reported as a robust behavior that is useful for high-throughput neuroactive drug discovery and mechanism prediction. Given the complexity of the PMR, there is a need for rapid and easy analysis of the behavioral data. In this study, we developed an automated analysis workflow using the KNIME Analytics Platform and made it freely accessible.
View Article and Find Full Text PDFDravet syndrome (DS) is one of the most pharmacoresistant and devastating forms of childhood epilepsy syndromes. Distinct de novo mutations in the SCN1A gene are responsible for over 80% of DS cases. While DS is largely resistant to treatment with existing anti-epileptic drugs, promising results have been obtained in clinical trials with human patients treated with the serotonin agonist fenfluramine as an add-on therapeutic.
View Article and Find Full Text PDFObjectives: To investigate the possibility of using Evans blue (EB) as a novel diagnostic tool to detect bladder tumours with white-light (WL) cystoscopy, in this preclinical study we examine the biodistribution of EB in the different layers (urothelium, submucosa, muscle) of a normal rat bladder and a rat bladder bearing a malignant urothelium composed of syngeneic AY-27 tumour cells.
Materials And Methods: EB was instilled into both normal as well as tumour-bearing rat bladders. After instillation, bladders were removed and snap frozen in liquid nitrogen.
Febrile seizures affect 2-4% of all children and have a strong genetic component. Recurrent mutations in three main genes (SCN1A, SCN1B and GABRG2) have been identified that cause febrile seizures with or without epilepsy. Here we report the identification of mutations in STX1B, encoding syntaxin-1B, that are associated with both febrile seizures and epilepsy.
View Article and Find Full Text PDFBackground: Wilson disease (WD) is caused by accumulation of excess copper (Cu) due to a mutation in the gene encoding the liver Cu transporter ATP7B, and is characterized by acute liver failure or cirrhosis and neuronal cell death. We investigated the effect of OSIP108, a plant derived decapeptide that prevents Cu-induced apoptosis in yeast and human cells, on Cu-induced toxicity in various mammalian in vitro models relevant for WD and in a Cu-toxicity zebrafish larvae model applicable to WD.
Methods: The effect of OSIP108 was evaluated on viability of various cell lines in the presence of excess Cu, on liver morphology of a Cu-treated zebrafish larvae strain that expresses a fluorescent reporter in hepatocytes, and on oxidative stress levels in wild type AB zebrafish larvae.
Medicinal plants used for the treatment of epilepsy are potentially a valuable source of novel antiepileptic small molecules. To identify anticonvulsant secondary metabolites, we performed an in vivo, zebrafish-based screen of medicinal plants used in Southeast Asia for the treatment of seizures. Solanum torvum Sw.
View Article and Find Full Text PDFZebrafish have recently emerged as an attractive model for the in vivo bioassay-guided isolation and characterization of pharmacologically active small molecules of natural origin. We carried out a zebrafish-based phenotypic screen of over 3000 plant-derived secondary metabolite extracts with the goal of identifying novel small-molecule modulators of the BMP and Wnt signaling pathways. One of the bioactive plant extracts identified in this screen - Jasminum gilgianum, an Oleaceae species native to Papua New Guinea - induced ectopic tails during zebrafish embryonic development.
View Article and Find Full Text PDFIn a previous study, we uncovered the anticonvulsant properties of turmeric oil and its sesquiterpenoids (ar-turmerone, α-, β-turmerone and α-atlantone) in both zebrafish and mouse models of chemically-induced seizures using pentylenetetrazole (PTZ). In this follow-up study, we aimed at evaluating the anticonvulsant activity of ar-turmerone further. A more in-depth anticonvulsant evaluation of ar-turmerone was therefore carried out in the i.
View Article and Find Full Text PDFPLoS One
July 2014
Over the past decade, zebrafish (Danio rerio) have emerged as an attractive model for in vivo drug discovery. In this study, we explore the suitability of zebrafish larvae to rapidly evaluate the anti-inflammatory activity of natural products (NPs) and medicinal plants used in traditional medicine for the treatment of inflammatory disorders. First, we optimized a zebrafish assay for leukocyte migration.
View Article and Find Full Text PDFNatural products (NPs) are an attractive source of chemical diversity for small-molecule drug discovery. Several challenges nevertheless persist with respect to NP discovery, including the time and effort required for bioassay-guided isolation of bioactive NPs, and the limited biomedical relevance to date of in vitro bioassays used in this context. With regard to bioassays, zebrafish have recently emerged as an effective model system for chemical biology, allowing in vivo high-content screens that are compatible with microgram amounts of compound.
View Article and Find Full Text PDFTwo new photosensitizers based on the BODIPY scaffold have been synthesized, of which one bears an NLS peptide, which is linked to the BODIPY's core using the copper catalysed azide-alkyne click reaction. The phototoxicities of these BODIPY based photosensitizers have been determined, as well as their dark toxicities. Although the conjugation of a single NLS peptide to the BODIPY did not lead to any observable nuclear localization, the photosensitizer did exhibit a superior photoxicity.
View Article and Find Full Text PDFZebrafish have recently emerged as an attractive in vivo model for epilepsy. Seven-day-old zebrafish larvae exposed to the GABA(A) antagonist pentylenetetrazol (PTZ) exhibit increased locomotor activity, seizure-like behavior, and epileptiform electrographic activity. A previous study showed that 12 out of 13 antiepileptic drugs (AEDs) suppressed PTZ-mediated increases in larval movement, indicating the potential utility of zebrafish as a high-throughput in vivo model for AED discovery.
View Article and Find Full Text PDFZebrafish are rapidly growing in popularity as an in vivo model system for chemical genetics, drug discovery, and toxicology, and more recently also for natural product discovery. Experiments involving the pharmacological evaluation of small molecules or natural product extracts in zebrafish bioassays require the effective delivery of these compounds to embryos and larvae. While most samples to be screened are first solubilized in dimethyl sulfoxide (DMSO), which is then diluted in the embryo medium, often this method is not sufficient to prevent the immediate or eventual precipitation of the sample.
View Article and Find Full Text PDFThe rapid acquisition of structural and bioactivity information on natural products (NPs) at the sub- milligram scale is key for performing efficient bioactivity-guided isolations. Zebrafish offer the possibility of rapid in vivo bioactivity analysis of small molecules at the microgram scale - an attractive feature when combined with high-resolution fractionation technologies and analytical methods such as UHPLC-TOF-MS and microflow NMR. Numerous biomedically relevant assays are now available in zebrafish, encompassing most indication areas.
View Article and Find Full Text PDFTurmeric, obtained from the rhizomes of Curcuma longa, is used in South Asia as a traditional medicine for the treatment of epilepsy. To date, in vivo studies on the anticonvulsant activity of turmeric have focused on its principal curcuminoid, curcumin. However, poor absorption and rapid metabolism have limited the therapeutic application of curcumin in humans.
View Article and Find Full Text PDF