S-Adenosyl-L-methionine (SAM) is an enzyme cofactor used in methyl transfer reactions and polyamine biosynthesis. The biosynthesis of SAM from ATP and L-methionine is performed by the methionine adenosyltransferase enzyme family (Mat; EC 2.5.
View Article and Find Full Text PDFPI3K, AKT, and mTOR are key kinases from PI3K signaling pathway being extensively pursued to treat a variety of cancers in oncology. To search for a structurally differentiated back-up candidate to PF-04691502, which is currently in phase I/II clinical trials for treating solid tumors, a lead optimization effort was carried out with a tricyclic imidazo[1,5]naphthyridine series. Integration of structure-based drug design and physical properties-based optimization yielded a potent and selective PI3K/mTOR dual kinase inhibitor PF-04979064.
View Article and Find Full Text PDFNovel conformationally-restricted mTOR kinase inhibitors with cyclic sulfone scaffold were designed. Synthesis and structure-activity relationship (SAR) studies are described with emphasis on optimization of the mTOR potency and selectivity against class I PI3Kα kinase. PF-05139962 was identified with excellent mTOR biochemical inhibition, cellular potency, kinase selectivity and in vitro ADME properties.
View Article and Find Full Text PDFInhibition of the Smoothened (Smo) represents a promising therapeutic strategy for treating malignant tumors that are dependent on the Hedgehog (Hh) signaling pathway. PF-5274857 is a novel Smo antagonist that specifically binds to Smo with a K(i) of 4.6 ± 1.
View Article and Find Full Text PDFHighly selective PI3K inhibitors with subnanomolar PI3Kα potency and greater than 7000-fold selectivity against mTOR kinase were discovered through structure-based drug design (SBDD). These tetra-substituted thiophenes were also demonstrated to have good in vitro cellular potency and good in vivo oral antitumor activity in a mouse PI3K driven NCI-H1975 xenograft tumor model. Compounds with the desired human PK predictions and good in vitro ADMET properties were also identified.
View Article and Find Full Text PDFA new protein expression vector design utilizing an N-terminal six-histidine tag and tobacco etch virus protease cleavage site upstream of the hepatitis C virus NS5A sequence has resulted in a more straightforward purification method and improved yields of purified NS5A domain I protein. High-resolution diffracting crystals of NS5A domain I (amino acids 33 to 202) [NS5A(33-202)] were obtained by using detergent additive crystallization screens, leading to the structure of a homodimer which is organized differently from that published previously (T. L.
View Article and Find Full Text PDFMost gastrointestinal stromal tumors (GISTs) exhibit aberrant activation of the receptor tyrosine kinase (RTK) KIT. The efficacy of the inhibitors imatinib mesylate and sunitinib malate in GIST patients has been linked to their inhibition of these mutant KIT proteins. However, patients on imatinib can acquire secondary KIT mutations that render the protein insensitive to the inhibitor.
View Article and Find Full Text PDFWhile nonstructural protein 4B (NS4B) from hepatitis C virus (HCV) is absolutely required for viral propagation, a full understanding of the enzymatic properties of this protein is lacking. Previous studies suggest that NS4B is located at the endoplasmic reticulum and that the protein structure consists of four central transmembrane domains with the N- and C-termini located in the cytoplasm of the host cell. To characterize the enzymatic activity of NS4B, the full-length protein with a C-terminal His tag was expressed in Sf9 insect cells and stabilized with nonionic detergents during purification.
View Article and Find Full Text PDFHerpesviruses are the second leading cause of human viral diseases. Herpes Simplex Virus types 1 and 2 and Varicella-zoster virus produce neurotropic infections such as cutaneous and genital herpes, chickenpox, and shingles. Infections of a lymphotropic nature are caused by cytomegalovirus, HSV-6, HSV-7, and Epstein-Barr virus producing lymphoma, carcinoma, and congenital abnormalities.
View Article and Find Full Text PDFA novel series of non-nucleoside HCV NS5B polymerase inhibitors was prepared from a (2Z)-2-benzoylamino-3-(4-phenoxy-phenyl)-acrylic acid template. Solution and solid phase analog synthesis focused on the northern region of the template combined with structure based design led to the discovery of several potent and orally bioavailable lead compounds.
View Article and Find Full Text PDFA novel series of nonnucleoside HCV NS5B polymerase inhibitors were prepared from (2Z)-2-(benzoylamino)-3-(5-phenyl-2-furyl)acrylic acid, a high throughput screening lead. SAR studies combined with structure based drug design focusing on the southern heterobiaryl region of the template led to the synthesis of several potent and orally bioavailable lead compounds. X-ray crystallography studies were also performed to understand the interaction of these inhibitors with HCV NS5B polymerase.
View Article and Find Full Text PDFThrough broad screening of the compound library at Pharmacia, a naphthalene carboxamide was identified as a nonnucleoside inhibitor of human cytomegalovirus (HCMV) polymerase. Structure-activity relationship studies demonstrated that a quinoline ring could be substituted for naphthalene, resulting in the discovery of a 4-hydroxyquinoline-3-carboxamide (4-HQC) class of antiviral agents with unique biological properties. In vitro assays with the 4-HQCs have demonstrated potent inhibition of HCMV, herpes simplex virus type 1 (HSV-1), and varicella-zoster virus (VZV) polymerases but no inhibition of human alpha, delta, and gamma polymerases.
View Article and Find Full Text PDF