Programming matter one molecule at a time is a long-standing goal in nanoscience. The atomic resolution of a scanning tunnelling microscope (STM) can give control over the probability of inducing single-outcome single-molecule reactions. Here we show it is possible to measure and influence the outcome of a single-molecule reaction with multiple competing outcomes.
View Article and Find Full Text PDFUnderstanding the ultra-fast transport properties of hot charge carriers is of significant importance both fundamentally and technically in applications like solar cells and transistors. However, direct measurement of charge transport at the relevant nanometre length scales is challenging with only a few experimental methods demonstrated to date. Here we report on molecular nanoprobe experiments on the Si(111)-7 × 7 at room temperature where charge injected from the tip of a scanning tunnelling microscope (STM) travels laterally across a surface and induces single adsorbate toluene molecules to react over length scales of tens of nanometres.
View Article and Find Full Text PDFWe report the local atomic manipulation properties of chemisorbed toluene molecules on the Si(111)-7x7 surface and of the silicon adatoms of the surface. Charge injected directly into the molecule, or into its underlying bonding silicon adatom, can induce the molecule to change bonding site. The voltage dependence of the rates of these processes match closely with scanning tunnelling spectroscopy of the toluene and adatom species.
View Article and Find Full Text PDFThe rate of desorption of chemisorbed chlorobenzene molecules from the Si(111)-7 × 7 surface, induced by nonlocal charge injection from an STM tip, depends on the surface temperature. Between 260 and 313 K, we find an Arrhenius thermal activation energy of 450 ± 170 meV, consistent with the binding energy of physisorbed chlorobenzene on the same surface. Injected electrons excite the chlorobenzene molecule from the chemisorption state to an intermediate physisorption state, followed by thermal desorption.
View Article and Find Full Text PDFControl over individual atoms with the scanning tunnelling microscope (STM) holds the tantalising prospect of atomic-scale construction, but is limited by its "one atom at a time" serial nature. "Remote control" through non-local STM manipulation-as we have demonstrated in the case of chlorobenzene on Si(111)-7×7-offers a new avenue for future "bottom-up" nanofabrication, since hundreds of chemical reactions may be carried out in parallel. Thus a good understanding of the non-local manipulation process, as provided by recent experiments, is important.
View Article and Find Full Text PDFWe report a new mechanism of (bond-selective) atomic manipulation in the scanning tunneling microscope (STM). We demonstrate a channel for one-electron-induced C-Cl bond dissociation in chlorobenzene molecules chemisorbed on the Si(111)-7 × 7 surface, at room temperature and above, which is thermally activated. We find an Arrhenius thermal energy barrier to one-electron dissociation of 0.
View Article and Find Full Text PDFWe have observed on-off switching of scanning tunneling microscope current flow to silicon adatoms of the Si(111)-(7 x 7) surface that are enclosed within a bistable dimeric corral of self-assembled chlorododecane molecules. These thermally activated oscillations amounted to an order of magnitude change in the current. Theory showed that small changes in molecular configuration could cause alterations in the corralled adatom's electronic energy by as much as 1 eV due to local field effects, accounting for the observed current switching.
View Article and Find Full Text PDFWe report the atomic manipulation properties of two distinct, stable, and reproducible states of a scanning tunneling microscope tip applied to chlorobenzene/Si(111)-(7x7). We show that the tip state influences the rates of (current-driven) molecular desorption and C-Cl dissociation as well as the branching ratio between these processes, but does not change the mediating electronic channel or the required number of electrons. These manipulation properties combined with the imaging properties of the two tip-states suggest the major difference between tip-states is their coupling efficiency to the pi-states of the chlorobenzene molecule.
View Article and Find Full Text PDF