Dip-pen nanolithography (DPN) is used to precisely position core/thick-shell ("giant") quantum dots (gQDs; ≥10 nm in diameter) exclusively on top of silicon nanodisk antennas (≈500 nm diameter pillars with a height of ≈200 nm), resulting in periodic arrays of hybrid nanostructures and demonstrating a facile integration strategy toward next-generation quantum light sources. A three-step reading-inking-writing approach is employed, where atomic force microscopy (AFM) images of the pre-patterned substrate topography are used as maps to direct accurate placement of nanocrystals. The DPN "ink" comprises gQDs suspended in a non-aqueous carrier solvent, o-dichlorobenzene.
View Article and Find Full Text PDFLaser shock Hugoniot data were obtained using ultrafast dynamic ellipsometry (UDE) for both nonideal (ethanol/water solutions with mole percent χ(ethanol) = 0%, 3.4%, 5.4%, 7.
View Article and Find Full Text PDF