Front Cell Dev Biol
September 2022
PharmaSea performed large-scale in vivo screening of marine natural product (MNP) extracts, using zebrafish embryos and larvae, to identify compounds with the potential to treat epilepsy. In this study, we report the discovery of two new antiseizure compounds, the 2,5-diketopiperazine halimide and its semi-synthetic analogue, plinabulin. Interestingly, these are both known microtubule destabilizing agents, and plinabulin could have the potential for drug repurposing, as it is already in clinical trials for the prevention of chemotherapy-induced neutropenia and treatment of non-small cell lung cancer.
View Article and Find Full Text PDFCoumarins are a well-known group of plant secondary metabolites with various pharmacological activities, including antiseizure activity. In the search for new antiseizure drugs (ASDs) to treat epilepsy, it is yet unclear which types of coumarins are particularly interesting as a systematic analysis has not been reported. The current study performed behavioral antiseizure activity screening of 18 different coumarin derivatives in the larval zebrafish pentylenetetrazole (PTZ) model using locomotor measurements.
View Article and Find Full Text PDFEpilepsy is a common disorder of the brain characterized by spontaneous recurrent seizures, which develop gradually during a process called epileptogenesis. The mechanistic processes underlying the changes of brain tissue and networks toward increased seizure susceptibility are not fully understood. In rodents, injection of kainic acid (KA) ultimately leads to the development of spontaneous epileptic seizures, reflecting similar neuropathological characteristics as seen in patients with temporal lobe epilepsy (TLE).
View Article and Find Full Text PDFDevelopmental and epileptic encephalopathies (DEEs) are complex conditions characterized primarily by seizures associated with neurodevelopmental and motor deficits. Recent evidence supports sigma-1 receptor modulation in both neuroprotection and antiseizure activity, suggesting that sigma-1 receptors may play a role in the pathogenesis of DEEs, and that targeting this receptor has the potential to positively impact both seizures and non-seizure outcomes in these disorders. Recent studies have demonstrated that the antiseizure medication fenfluramine, a serotonin-releasing drug that also acts as a positive modulator of sigma-1 receptors, reduces seizures and improves everyday executive functions (behavior, emotions, cognition) in patients with Dravet syndrome and Lennox-Gastaut syndrome.
View Article and Find Full Text PDFZebrafish embryos (ZFE) have increasingly gained in popularity as a model to perform safety screenings of compounds. Although immersion of ZFE is the main route of exposure used, evidence shows that not all small molecules are equally absorbed, possibly resulting in false-negative readouts and incorrect conclusions. In this study, we compared the pharmacokinetics of seven fluorescent compounds with known physicochemical properties that were administered to two-cell stage embryos by immersion or by IY microinjection.
View Article and Find Full Text PDFIn drug discovery, often animal models are used that mimic human diseases as closely as possible. These animal models can be used to address various scientific questions, such as testing and evaluation of new drugs, as well as understanding the pathogenesis of diseases. Currently, the most commonly used animal models in the field of fibrosis are rodents.
View Article and Find Full Text PDFDravet syndrome (DS) is a rare genetic encephalopathy that is characterized by severe seizures and highly resistant to commonly used antiepileptic drugs (AEDs). In 2020, FDA has approved fenfluramine (FFA) for treatment of seizures associated with DS. However, the clinically used FFA is a racemic mixture (i.
View Article and Find Full Text PDFObjective: Adjunctive fenfluramine hydrochloride, classically described as acting pharmacologically through a serotonergic mechanism, has demonstrated a unique and robust clinical response profile with regard to its magnitude, consistency, and durability of effect on seizure activity in patients with pharmacoresistant Dravet syndrome. Recent findings also support long-term improvements in executive functions (behavior, emotion, cognition) in these patients. The observed clinical profile is inconsistent with serotonergic activity alone, as other serotonergic medications have not been demonstrated to have these clinical effects.
View Article and Find Full Text PDFThere is a high need for the development of new and improved antiseizure drugs (ASDs) to treat epilepsy. Despite the potential of marine natural products (MNPs), the EU marine biodiscovery consortium PharmaSea has made the only effort to date to perform ASD discovery based on large-scale screening of MNPs. To this end, the embryonic zebrafish photomotor response assay and the larval zebrafish pentylenetetrazole (PTZ) model were used to screen MNP extracts for neuroactivity and antiseizure activity, respectively.
View Article and Find Full Text PDFTuberous sclerosis complex (TSC) is a rare disease caused by mutations in the TSC1 or TSC2 genes and is characterized by widespread tumour growth, intractable epilepsy, cognitive deficits and autistic behaviour. CBD has been reported to decrease seizures and inhibit tumour cell progression, therefore we sought to determine the influence of CBD on TSC pathology in zebrafish carrying a nonsense mutation in the tsc2 gene. CBD treatment from 6 to 7 days post-fertilization (dpf) induced significant anxiolytic actions without causing sedation.
View Article and Find Full Text PDFEthnopharmacological Relevance: Semen Pharbitidis, the seeds of Pharbitis nil (Linn.) Choisy (Convolvulaceae) is a well-known traditional Chinese medicinal plant used for treating helminthiasis and epilepsy in China.
Aim Of The Study: This study aims to identify the anti-seizure components from Semen Pharbitidis.
Mutations in DEPDC5 are causal factors for a broad spectrum of focal epilepsies, but the underlying pathogenic mechanisms are still largely unknown. To address this question, a zebrafish depdc5 knockout model showing spontaneous epileptiform events in the brain, increased drug-induced seizure susceptibility, general hypoactivity, premature death at 2-3 weeks post-fertilization, as well as the expected hyperactivation of mTOR signaling was developed. Using this model, the role of DEPDC5 in brain development was investigated using an unbiased whole-transcriptomic approach.
View Article and Find Full Text PDFIn search for novel antiseizure drugs (ASDs), the European FP7-funded PharmaSea project used zebrafish embryos and larvae as a drug discovery platform to screen marine natural products to identify promising antiseizure hits in vivo for further development. Within the framework of this project, seven known heterospirocyclic γ-lactams, namely, pseurotin A, pseurotin A, pseurotin F1, 11- O-methylpseurotin A, pseurotin D, azaspirofuran A, and azaspirofuran B, were isolated from the bioactive marine fungus Aspergillus fumigatus, and their antiseizure activity was evaluated in the larval zebrafish pentylenetetrazole (PTZ) seizure model. Pseurotin A and azaspirofuran A were identified as antiseizure hits, while their close chemical analogues were inactive.
View Article and Find Full Text PDFAfter the identification of the anti-inflammatory properties of VA5-13l (2-benzyl-1- methyl-5-nitroindazolinone) in previous investigations, some of its analogous compounds were designed, synthesized and evaluated in two anti-inflammatory methods: LPS-enhanced leukocyte migration assay in zebrafish; and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse ear edema. The products evaluated (3, 6, 8, 9 and 10) showed the lower values of relative leukocyte migration at 30 µM (0.14, 0.
View Article and Find Full Text PDFEpilepsy is a neurological disease that affects more than 70 million people worldwide and is characterized by the presence of spontaneous unprovoked recurrent seizures. Existing anti-seizure drugs (ASDs) have side effects and fail to control seizures in 30% of patients due to drug resistance. Hence, safer and more efficacious drugs are sorely needed.
View Article and Find Full Text PDFTuberous sclerosis complex (TSC) is a rare, genetic disease caused by loss-of-function mutations in either TSC1 or TSC2. Patients with TSC are neurologically characterized by the presence of abnormal brain structure, intractable epilepsy and TSC-associated neuropsychiatric disorders. Given the lack of effective long-term treatments for TSC, there is a need to gain greater insight into TSC-related pathophysiology and to identify and develop new treatments.
View Article and Find Full Text PDFHerein is described in silico repositioning, design, synthesis, biological evaluation and structure-activity relationship (SAR) of an original class of anti-inflammatory agents based on a polyaromatic pharmacophore structurally related to bisacodyl (BSL) drug used in therapeutic as laxative. We describe the potential of TOMOCOMD-CARDD methods to find out new anti-inflammatory drug-like agents from a diverse series of compounds using the total and local atom based bilinear indices as molecular descriptors. The models obtained were validated by biological studies, identifying BSL as the first anti-inflammatory lead-like using in silico repurposing from commercially available drugs.
View Article and Find Full Text PDFNanomaterials are being extensively produced and applied in society. Human and environmental exposures are, therefore, inevitable and so increased attention is being given to nanotoxicity. While silica nanoparticles (NP) are one of the top five nanomaterials found in consumer and biomedical products, their toxicity profile is poorly characterized.
View Article and Find Full Text PDF