ACS Appl Nano Mater
July 2024
The advancement of liquid phase electron/ion beam induced deposition has enabled an effective direct-write approach for functional nanostructure synthesis with the possibility of three-dimensional control of morphology. For formation of a metallic solid phase, the process employs ambient temperature, beam-guided, electrochemical reduction of precursor cations, resulting in rapid formation of structures, but with challenges for retention of resolution achievable via slower electron beam approaches. The possibility of spatial control of redox pathways via the use of water-ammonia solvents has opened avenues for improved nanostructure resolution without sacrificing the growth rate.
View Article and Find Full Text PDFIn recent years, cell-based therapies have transformed medical treatment. These therapies present a multitude of challenges associated with identifying the mechanism of action, developing accurate safety and potency assays, and achieving low-cost product manufacturing at scale. The complexity of the problem can be attributed to the intricate composition of the therapeutic products: living cells with complex biochemical compositions.
View Article and Find Full Text PDFBackground Aims: In-process monitoring and control of biomanufacturing workflows remains a significant challenge in the development, production, and application of cell therapies. New process analytical technologies must be developed to identify and control the critical process parameters that govern ex vivo cell growth and differentiation to ensure consistent and predictable safety, efficacy, and potency of clinical products.
Methods: This study demonstrates a new platform for at-line intracellular analysis of T-cells.
Brain temperature is an understudied parameter relevant to brain injury and ischemia. To advance our understanding of thermal dynamics in the human brain, combined with the challenges of routine experimental measurements, a biophysical modeling framework was developed to facilitate individualized brain temperature predictions. Model-predicted brain temperatures using our fully conserved model were compared with whole brain chemical shift thermometry acquired in 30 healthy human subjects (15 male and 15 female, age range 18-36 years old).
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
September 2022
The ability to control and optimize interactions between light and matter has much utility in engineering design. A well-researched way to achieve optical property modulation is via the use of optical metamaterials, which feature sub-wavelength scale surface structures. In this work, an alternative approach for modulating optical properties is presented using a composite surface modified with a periodic array of semitransparent hemispherical shell mesoscale structures which are larger than the incident light wavelength.
View Article and Find Full Text PDFThe exceptional photochromic and redox properties of polyoxometalate anions, PWO, have been exploited to develop an integrated photoelectrochemical energy storage cell for conversion and storage of solar energy. Elimination of strongly coordinating cations using benchtop ion soft landing leads to a ∼370% increase in the maximum power output of the device. Additionally, the photocathode displayed a pronounced color change from clear to blue upon irradiation, which warrants the potential application of the IPES cell in advanced smart windows and photochromic lenses.
View Article and Find Full Text PDFIrradiation of a liquid solution generates solvated electrons and radiolysis products, which can lead to material deposition or etching. The chemical environment dictates the dominant reactions. Radiolysis-induced reactions in salt solutions have substantially different results in pure water versus water-ammonia, which extends the lifetime of solvated electrons.
View Article and Find Full Text PDFReal-time, advanced diagnostics of the biochemical state within cells remains a significant challenge for research and development, production, and application of cell-based therapies. The fundamental biochemical processes and mechanisms of action of such advanced therapies are still largely unknown, including the critical quality attributes that correlate to therapeutic function, performance, and potency and the critical process parameters that impact quality throughout cell therapy manufacturing. An integrated microfluidic platform has been developed for in-line analysis of a small number of cells direct infusion nano-electrospray ionization mass spectrometry.
View Article and Find Full Text PDFVortical jet flows in the Reynolds number (Re) range from 1000 to 3425 and swirl number (S) below 0.5, alone and in combination with suction through a small aperture, are experimentally investigated using optical visualization. Schlieren photography is employed to assess the vortical flow structure and establish the fundamental understanding of the source-to-sink gas-dynamic coupling, including the role played by flow rate, jet diameter, and the separation distance between the gas jet source and the suction sink.
View Article and Find Full Text PDFNascent advanced therapies, including regenerative medicine and cell and gene therapies, rely on the production of cells in bioreactors that are highly heterogeneous in both space and time. Unfortunately, advanced therapies have failed to reach a wide patient population due to unreliable manufacturing processes that result in batch variability and cost prohibitive production. This can be attributed largely to a void in existing process analytical technologies (PATs) capable of characterizing the secreted critical quality attribute (CQA) biomolecules that correlate with the final product quality.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
October 2020
Gas-flow assistance is commonly used in ESI-MS for improved transport and desolvation, and fundamental understanding of the underlying phenomena is essential for improvement of aerodynamic interfaces that couple ESI sources and MS. For this purpose, an electrohydrodynamic model is developed for simulation of charged droplet dynamics under the combined effects of gas flow and electric fields with consideration of space charge interactions within the charged aerosol plume. The model is implemented in COMSOL by exploiting a formalism for establishing the droplet trajectories as a sequence of successive droplets ejected at a frequency defined by the electrospray current.
View Article and Find Full Text PDFPolyoxometalates (POM) have been deposited onto carbon nanotube (CNT) electrodes using benchtop ion soft landing (SL) enabled by a vortex-confined electrohydrodynamic desolvation process. The device is based on the dry ion localization and locomotion (DRILL) mass spectrometry interface of Fedorov and co-workers. By adding electrospray emitters, heating the desolvation gas, and operating at high gas flow rates, it is possible to obtain stable ion currents up to -15 nA that are ideal for deposition.
View Article and Find Full Text PDFLarge-scale manufacturing of therapeutic cells requires bioreactor technologies with online feedback control enabled by monitoring of secreted biomolecular critical quality attributes (CQAs). Electrospray ionization mass spectrometry (ESI-MS) is a highly sensitive label-free method to detect and identify biomolecules, but requires extensive sample preparation before analysis, making online application of ESI-MS challenging. We present a microfabricated, monolithically integrated device capable of continuous sample collection, treatment, and direct infusion for ESI-MS detection of biomolecules in high-salt solutions.
View Article and Find Full Text PDFWe describe the DRILL (dry ion localization and locomotion) device, which is an interface for electrospray ionization (ESI)-mass spectrometry (MS) that exploits a swirling flow to enable the use of inertial separation to prescribe different fates for electrosprayed droplets based on their size. This source adds a new approach to charged droplet trajectory manipulation which, when combined with hydrodynamic drag forces and electric field forces, provides a rich range of possible DRILL operational modes. Here, we experimentally demonstrate sensitivity improvement obtained via vortex-induced inertial sorting of electrosprayed droplets/ions: one possible mode of DRILL operation.
View Article and Find Full Text PDFAdvancement of focused electron beam-induced deposition (FEBID) as a versatile direct-write additive nanoscale fabrication technique has been inhibited by poor throughput, limited choice of precursors, and restrictions on possible 3D topologies. Here, we demonstrate FEBID using nanoelectrospray liquid precursor injection to grow carbon and pure metal nanostructures via direct decomposition and electrochemical reduction of the relevant precursors, achieving growth rates 10(5) times greater than those observed in standard gas-phase FEBID. Initiating growth at the free surface of a liquid pool enables fabrication of complex 3D carbon nanostructures with strong adhesion to the substrate.
View Article and Find Full Text PDFSalt removal is a prerequisite for electrospray ionization mass spectrometry (ESI-MS) analysis of biological samples. Rapid desalting and a low volume connection to an electrospray tip are required for time-resolved measurements. We have developed a microfabricated desalting device that meets both requirements, thus providing the foundational technology piece for transient ESI-MS measurements of complex biological liquid specimens.
View Article and Find Full Text PDFWe have developed a new mass spectrometry (MS) based approach for continuous, spatially resolved in vitro biochemical detection and demonstrated its utility in a 3-D cell culture system. Extracellular liquid is passively extracted at a low flow rate (~10 nL/s) through a small bore silica capillary (ID 50 μm); inline microdialysis (MD) removes ions that would interfere with mass spectrometric analysis, and the sample is ionized by nanoelectrospray ionization (nano-ESI) and mass analyzed in a time-of-flight mass spectrometer. The system successfully detects low-volume, low-concentration releases of a small protein (8 μL of 5 μM cytochrome-c, molecular mass ~12 kDa) and exhibits ~1 min temporal resolution.
View Article and Find Full Text PDFThe scanning mass spectrometry (SMS) probe is a new electrospray ion source. Motivated by the need for untargeted chemical imaging of dynamic events in solution, we have exploited an approach to electrospray ionization (ESI) that allows continuous sampling from a highly localized volume (approximately picoliters) in a liquid environment, softly ionizes molecules in the sample to render them amenable for mass spectrometric analysis, and sends the ions to the mass spectrometer. The key underlying concepts for our approach are (1) treating the electrospray capillary inlet as a chemical scanning probe and (2) locating the electrospray point as close as possible to the sampling point, thus providing the shortest response time possible.
View Article and Find Full Text PDFWe validate, by comparison with experimental data, a theoretical description of the amperometric response of microbiosensors formed via enzyme entrapment. The utility of the theory is further illustrated with two relevant examples supported by experiments: (1) quantitative detection of glucose and (2) quantitative detection of adenosine triphosphate (ATP).
View Article and Find Full Text PDFJ Electroanal Chem (Lausanne)
January 2008
We have developed a theoretical description of the amperometric response of ultramicroelectrode (UME) biosensors formed via enzyme entrapment. Our model allows for multiple enzymes and co-substrates, and results in a closed-form analytical expression for the steady-state current response of the disk ultramicroelectrode. It captures the effects of enzyme-entrapment domain size, species transport properties (which can be different in the polymer and surrounding electrolyte), enzyme kinetics, and axisymmetric diffusion.
View Article and Find Full Text PDFWe consider the transport of multiple reacting species under the continuum assumption in situations such as those that frequently arise in electroanalytical chemistry. Under certain limitations, it has been shown that the total species concentration (as defined by Oldham and Feldberg) of such a system is uniform and constant. In this work, we extend the limits of the previous analysis to enable greater applicability.
View Article and Find Full Text PDFA thermodynamic theory is developed to predict growth, rearrangement to a close-packed ensemble, and transition to a deformed or coalesced state for droplets in a confined space. For the close-packed configuration, analysis of forced interactions between confined droplets yields analytical criteria for predicting whether droplets will deform and if they will coalesce. Relevant nondimensional parameters are identified to generalize results in terms of energy barrier maps, and their use for predicting interacting droplet behavior is described.
View Article and Find Full Text PDF