The RING E3 ubiquitin ligase UHRF1 is an established cofactor for DNA methylation inheritance. The model posits that nucleosomal engagement through histone and DNA interactions directs UHRF1 ubiquitin ligase activity toward lysines on histone H3 tails, creating binding sites for DNMT1 through ubiquitin interacting motifs (UIM1 and UIM2). However, the extent to which DNMT1 relies on ubiquitin signaling through UHRF1 in support of DNA methylation maintenance remains unclear.
View Article and Find Full Text PDFAlmost 50% of patients with myelodysplastic syndrome (MDS) are refractory to first-line hypomethylating agents (HMAs), which presents a significant clinical challenge considering the lack of options for salvage. Past work revealed that immune checkpoint molecules on peripheral myeloblasts and immune cells are up-regulated after HMA treatment. Therefore, we conducted a Phase I/II clinical trial combining guadecitabine (an HMA) and atezolizumab (an immune checkpoint inhibitor) to treat HMA-relapsed or refractory (HMA-R/R) MDS patients.
View Article and Find Full Text PDFLong terminal repeats (LTRs), which often contain promoter and enhancer sequences of intact endogenous retroviruses (ERVs), are known to be co-opted as cis-regulatory elements for fine-tuning host-coding gene expression. Since LTRs are mainly silenced by the deposition of repressive epigenetic marks, substantial activation of LTRs has been found in human cells after treatment with epigenetic inhibitors. Although the LTR12C family makes up the majority of ERVs activated by epigenetic inhibitors, how these epigenetically and transcriptionally activated LTR12C elements can regulate the host-coding gene expression remains unclear due to genome-wide alteration of transcriptional changes after epigenetic inhibitor treatments.
View Article and Find Full Text PDFChronological aging correlates with epigenetic modifications at specific loci, calibrated to species lifespan. Such 'epigenetic clocks' appear conserved among mammals, but whether they are cell autonomous and restricted by maximal organismal lifespan remains unknown. We used a multilifetime murine model of repeat vaccination and memory T cell transplantation to test whether epigenetic aging tracks with cellular replication and if such clocks continue 'counting' beyond species lifespan.
View Article and Find Full Text PDFThe RING E3 ubiquitin ligase UHRF1 is an established cofactor for DNA methylation inheritance. Nucleosomal engagement through histone and DNA interactions directs UHRF1 ubiquitin ligase activity toward lysines on histone H3 tails, creating binding sites for DNMT1 through ubiquitin interacting motifs (UIM1 and UIM2). Here, we profile contributions of UHRF1 and DNMT1 to genome-wide DNA methylation inheritance and dissect specific roles for ubiquitin signaling in this process.
View Article and Find Full Text PDFSo far, power input has been used as the main parameter for bioreactor scale-up/-down in upstream process development and manufacturing. The rationale is that maintaining a consistent power input per unit volume should result in comparable mixing times at different scales. However, shear generated from turbulent flow may compromise the integrity of non-robust cells such as those used during the production of cell and gene therapies, which may lead to low product quality and yield.
View Article and Find Full Text PDFNon-small-cell lung cancer remains a deadly form of human cancer even in the era of immunotherapy with existing immunotherapy strategies currently only benefiting a minority of patients. Therefore, the derivation of treatment options, which might extend the promise of immunotherapy to more patients, remains of paramount importance. Here, we define using TCGA lung squamous and lung adenocarcinoma RNAseq datasets a significant correlation between epigenetic therapy actionable interferon genes with both predicted tumor immune score generally, and CD8A specifically.
View Article and Find Full Text PDFCpG methylation generally occurs on both DNA strands and is essential for mammalian development and differentiation. Until recently, hemimethylation, in which only one strand is methylated, was considered to be simply a transitory state generated during DNA synthesis. The discovery that a subset of CCCTC-binding factor (CTCF) binding sites is heritably hemimethylated suggests that hemimethylation might have an unknown biological function.
View Article and Find Full Text PDFPurpose: On the basis of preclinical evidence of epigenetic contribution to sensitivity and resistance to immune checkpoint inhibitors (ICI), we hypothesized that guadecitabine (hypomethylating agent) and atezolizumab [anti-programmed cell death ligand 1 (PD-L1)] together would potentiate a clinical response in patients with metastatic urothelial carcinoma (UC) unresponsive to initial immune checkpoint blockade therapy.
Patients And Methods: We designed a single arm phase II study (NCT03179943) with a safety run-in to identify the recommended phase II dose of the combination therapy of guadecitabine and atezolizumab. Patients with recurrent/advanced UC who had previously progressed on ICI therapy with programmed cell death protein 1 or PD-L1 targeting agents were eligible.
The development of more effective targeted therapies for hepatocellular carcinoma (HCC) patients due to its aggressiveness is urgently needed. DNA methyltransferase inhibitors (DNMTis) represented the first clinical breakthrough to target aberrant cancer epigenomes. However, their clinical efficacies are still limited, in part due to an "epigenetic switch" in which a large group of genes that are demethylated by DNMTi treatment remain silenced by polycomb repressive complex 2 (PRC2) occupancy.
View Article and Find Full Text PDFWe have developed a mouse DNA methylation array that contains 296,070 probes representing the diversity of mouse DNA methylation biology. We present a mouse methylation atlas as a rich reference resource of 1,239 DNA samples encompassing distinct tissues, strains, ages, sexes, and pathologies. We describe applications for comparative epigenomics, genomic imprinting, epigenetic inhibitors, patient-derived xenograft assessment, backcross tracing, and epigenetic clocks.
View Article and Find Full Text PDFThe DNA methylation status of the X-chromosome in cancer cells is often overlooked because of computational difficulties. Most of the CpG islands on the X-chromosome are mono-allelically methylated in normal female cells and only present as a single copy in male cells. We treated two colorectal cancer cell lines from a male (HCT116) and a female (RKO) with increasing doses of a DNA methyltransferase 1 (DNMT1)-specific inhibitor (GSK3685032/GSK5032) over several months to remove as much non-essential CpG methylation as possible.
View Article and Find Full Text PDFDNA methylation, a key epigenetic driver of transcriptional silencing, is universally dysregulated in cancer. Reversal of DNA methylation by hypomethylating agents, such as the cytidine analogs decitabine or azacytidine, has demonstrated clinical benefit in hematologic malignancies. These nucleoside analogs are incorporated into replicating DNA where they inhibit DNA cytosine methyltransferases DNMT1, DNMT3A and DNMT3B through irreversible covalent interactions.
View Article and Find Full Text PDFGenomic imprinting occurs before fertilization, impacts every cell of the developing child, and may be sensitive to environmental perturbations. The noncoding RNA, (also called ) is the only known example of the ∼100 human genes imprinted by DNA methylation, that shows polymorphic imprinting in the population. The gene is part of an ∼1.
View Article and Find Full Text PDFAdvances in treating β cell loss include islet replacement therapies or increasing cell proliferation rate in type 1 and type 2 diabetes, respectively. We propose developing multiple proliferation-inducing prodrugs that target high concentration of zinc ions in β cells. Unfortunately, typical two-dimensional (2D) cell cultures do not mimic in vivo conditions, displaying a markedly lowered zinc content, while 3D culture systems are laborious and expensive.
View Article and Find Full Text PDFCpG methylation by de novo DNA methyltransferases (DNMTs) 3A and 3B is essential for mammalian development and differentiation and is frequently dysregulated in cancer. These two DNMTs preferentially bind to nucleosomes, yet cannot methylate the DNA wrapped around the nucleosome core, and they favour the methylation of linker DNA at positioned nucleosomes. Here we present the cryo-electron microscopy structure of a ternary complex of catalytically competent DNMT3A2, the catalytically inactive accessory subunit DNMT3B3 and a nucleosome core particle flanked by linker DNA.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2020
Multicellular eukaryotic genomes show enormous differences in size. A substantial part of this variation is due to the presence of transposable elements (TEs). They contribute significantly to a cell's mass of DNA and have the potential to become involved in host gene control.
View Article and Find Full Text PDFThe DNA methyltransferase inhibitors (DNMTi) 5-azacytidine and 5-aza-2-deoxycytidine have been approved for the treatment of different types of hematologic malignancies. However, only about 50% of patients respond to treatment. Therefore, a more comprehensive understanding of the molecular changes in patients treated with DNMTi is needed.
View Article and Find Full Text PDFBackground: Patients with haematological malignancies are often vitamin C deficient, and vitamin C is essential for the TET-induced conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), the first step in active DNA demethylation. Here, we investigate whether oral vitamin C supplementation can correct vitamin C deficiency and affect the 5hmC/5mC ratio in patients with myeloid cancers treated with DNA methyltransferase inhibitors (DNMTis).
Results: We conducted a randomized, double-blinded, placebo-controlled pilot trial (NCT02877277) in Danish patients with myeloid cancers performed during 3 cycles of DNMTi-treatment (5-azacytidine, 100 mg/m/d for 5 days in 28-day cycles) supplemented by oral dose of 500 mg vitamin C (n = 10) or placebo (n = 10) daily during the last 2 cycles.
DNA methylation inhibitors have become the mainstay for treatment of certain haematological malignancies. In addition to their abilities to reactivate genes, including tumour suppressors, that have acquired DNA methylation during carcinogenesis, they induce the expression of thousands of transposable elements including endogenous retroviruses and latent cancer testis antigens normally silenced by DNA methylation in most somatic cells. This results in a state of viral mimicry in which treated cells mount an innate immune response by turning on viral defence genes and potentially expressing neoantigens.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2018
Genomic imprinting mediated by DNA methylation restricts gene expression to a single allele determined by parental origin and is not generally considered to be under genetic or environmental influence. Here, we focused on a differentially methylated region (DMR) of approximately 1.9 kb that includes a 101-bp noncoding RNA gene (/), which is maternally imprinted in ∼75% of humans.
View Article and Find Full Text PDFOvarian cancer ranks as the most deadly gynecologic cancer, and there is an urgent need to develop more effective therapies. Previous studies have shown that G9A, a histone methyltransferase that catalyzes mono- and dimethylation of histone H3 lysine9, is highly expressed in ovarian cancer tumors, and its overexpression is associated with poor prognosis. Here we report that pharmacologic inhibition of G9A in ovarian cancer cell lines with high levels of expression induces synergistic antitumor effects when combined with the DNA methylation inhibitor (DNMTi) 5-aza-2'-deoxycytidine (5-aza-CdR).
View Article and Find Full Text PDF