Forest biological disturbance agents (BDAs) are insects, pathogens, and parasitic plants that affect tree decline, mortality, and forest ecosystems processes. BDAs are commonly thought to increase the likelihood and severity of fire by converting live standing trees to more flammable, dead and downed fuel. However, recent research indicates that BDAs do not necessarily increase, and can reduce, the likelihood or severity of fire.
View Article and Find Full Text PDFFront For Glob Change
February 2022
is a common native, endophytic fungus of Douglas-fir foliage, which causes Swiss needle cast, an important foliage disease that is considered a threat to Douglas-fir plantations in Oregon. Disease expression is influenced by fungal fruiting bodies (pseudothecia), which plug the stomata and inhibit gas exchange. Trees are impacted when pseudothecia plug stomates on 1-year-old and older needles resulting in early needle abscission.
View Article and Find Full Text PDFIt is well known that exposure to ambient O can decrease growth in many tree species in the United States (US). Our study reports experimental data from outdoor open-top chamber (OTC) studies that quantify total biomass response changes for seedlings of 16 species native to western and eastern North America, which were exposed to several levels of elevated O for one or more years. The primary objective of this study is to establish a reference set of parameters for these seedling exposure-response relationships using a 3-month (92 day) 12-hr W126 O metric used by US Environmental Protection Agency and other agencies to assess risk to trees from O exposure.
View Article and Find Full Text PDFThe fungal pathogen, , occurs wherever Douglas-fir is found but disease damage is believed to be limited to the Coast Range and is of no concern outside the coastal fog zone (Shaw, et al., 2011). However, knowledge remains limited on the history and spatial distribution of Swiss Needle Cast (SNC) impacts in the Pacific Northwest (PNW).
View Article and Find Full Text PDFSwiss needle cast (SNC), caused by a fungal pathogen, Nothophaeocryptopus gaeumannii, is a major forest disease of Douglas-fir (Pseudotsuga menziesii) stands of the Pacific Northwest (PNW). There is mounting concern that the current SNC epidemic occurring in Oregon and Washington will continue to increase in severity, frequency and spatial extent with future warming. Nothophaeocryptopus gaeumannii occurs wherever its host is found, but very little is known about the history and spatial distribution of SNC and its effects on growth and physiological processes of mature and old-growth forests within the Douglas-fir region of the PNW.
View Article and Find Full Text PDFWildland fires (WLF) have become more frequent, larger, and severe with greater impacts to society and ecosystems and dramatic increases in firefighting costs. Forests throughout the range of ponderosa pine in Oregon and Washington are jeopardized by the interaction of anomalously dense forest structure, a warming and drying climate, and an expanding human population. These forests evolved with frequent interacting disturbances including low-severity surface fires, droughts, and biological disturbance agents (BDAs).
View Article and Find Full Text PDFSwiss needle cast (SNC), caused by , is an important foliage disease of Douglas-fir () forests of the Pacific Northwest. The fungus lives endophytically within the foliage, until forming reproductive structures (pseudothecia) that plug stomates and cause carbon starvation. When pseudothecia appear on one- and two-year-old foliage, significant needle abscission can occur, which reduces productivity of the tree.
View Article and Find Full Text PDFLarge conifer trees in the Pacific Northwest, USA (PNW) use stored water to extend photosynthesis, both diurnally and seasonally. This is particularly important during the summer drought, which is characteristic of the region. In the PNW, climate change is predicted to result in hotter, drier summers and warmer, wetter winters with decreased snowpack by mid-century.
View Article and Find Full Text PDFA time series intervention analysis (TSIA) of dendrochronological data to infer the tree growth-climate-disturbance relations and forest disturbance history is described. Maximum likelihood is used to estimate the parameters of a structural time series model with components for climate and forest disturbances (i.e.
View Article and Find Full Text PDFThe fungal pathogen, , causing Swiss needle cast (SNC) occurs wherever Douglas-fir is found but disease damage is believed to be limited in the U.S. Pacific Northwest (PNW) to the Coast Range of Oregon and Washington (Hansen et al.
View Article and Find Full Text PDFForest disturbance regimes are beginning to show evidence of climate-mediated changes, such as increasing severity of droughts and insect outbreaks. We review the major insects and pathogens affecting the disturbance regime for coastal Douglas-fir forests in western Oregon and Washington State, USA, and ask how future climate changes may influence their role in disturbance ecology. Although the physiological constraints of light, temperature, and moisture largely control tree growth, episodic and chronic disturbances interacting with biological factors have substantial impacts on the structure and functioning of forest ecosystems in this region.
View Article and Find Full Text PDFWe demonstrate an approach for evaluating the level of protection attained using a variety of forms and levels of past, current, and proposed Air Quality Standards (AQSs). The U.S.
View Article and Find Full Text PDFPurportedly, large Douglas-fir trees in the American Pacific Northwest use water stored in bole tissues to ameliorate the effects of seasonal summer drought, the water content of bole tissues being drawn down over the summer months and replenished during the winter. Continuous monitoring of bole relative water content (RWC) in two 110-120-year-old Douglas-fir trees with ThetaProbe impedance devices provided an integrated measure of phloem-sapwood water content over 4 years. Seasonal changes in RWC closely tracked cambial activity and wood formation, but lagged changes in soil water content by 2-3 months.
View Article and Find Full Text PDF