Photothermal therapy (PTT) and photodynamic therapy (PDT) are potential cancer treatment methods that are minimally invasive with high specificity for malignant cells. Emerging research has concentrated on the application of metal nanoparticles encapsulated in porphyrin and their derivatives to improve the efficacy of these treatments. Gold and silver nanoparticles have distinct optical properties and biocompatibility, which makes them efficient materials for PDT and PTT.
View Article and Find Full Text PDFNanomaterials are an emerging class of compounds with potential to advance technology for wastewater treatment. There are many toxic substances in industrial wastewater that are dangerous to the aquatic ecosystem and public health. These pollutants require the development of novel techniques to remove them from the environment.
View Article and Find Full Text PDFA porous copper(ii) metal-organic framework (MOF) of 4,4',4''-tri--butyl-2,2':6',2''-terpyridine(Nttb) and 5-nitroisophthalic acid (npd) formulated as [Cu(npd)(Nttb)]·(DMF)(HO) 1 (DMF = dimethylformamide) was synthesized and characterized by elemental analyses, spectroscopic techniques, single crystal X-ray crystallography, and scanning electron microscopy. Single crystal X-ray crystallographic analysis of the copper(ii) metal-organic framework reveals a monoclinic crystal system with space group 2/. The copper(ii) ion is in a five-coordinate geometry consisting of three meridional nitrogen atoms of 4,4',4''-tri--butyl-2,2':6',2''-terpyridine and two oxygen atoms of 5-nitroisophthalic acid to form a square pyramidal structure.
View Article and Find Full Text PDFIron oxide nanoparticles were synthesized by co-precipitation using three different iron salt stoichiometric mole ratios. Powder X-ray diffraction patterns revealed the inverse cubic spinel structure of magnetite iron oxide. Transmission electron microscopic images showed FeO nanoparticles with different shapes and average particle sizes of 5.
View Article and Find Full Text PDFOctylamine (OTA), 1-dodecanethiol (DDT), and tri-n-octylphosphine (TOP) capped magnetite nanoparticles were prepared by co-precipitation method. Powder X-ray diffraction patterns confirmed inverse spinel crystalline phases for the as-prepared iron oxide nanoparticles. Transmission electron microscopic micrographs showed iron oxide nanoparticles with mean particle sizes of 2.
View Article and Find Full Text PDFWe report the preparation and crystal structures of bis(diallydithiocarbamato)zinc(II) and silver(I) complexes. The compounds were used as single-source precursors to prepare zinc sulfide and silver sulfide nanophotocatalysts. The molecular structure of bis(diallydithiocarbamato)zinc(II) consists of a dimeric complex in which each zinc(II) ion asymmetrically coordinates with two diallydithiocarbamato anions in a bidentate chelating mode, and the centrosymmetrically related molecule is bridged through the S-atom that is chelated to the adjacent zinc(II) ion to form a distorted trigonal bipyramidal geometry around the zinc(II) ions.
View Article and Find Full Text PDFChallenges encountered in relapse of illness caused by resistance of microorganisms to antimicrobial agents (drugs) are due to factors of severe stress initiated by random use of antibiotics and insufficient beneficial approaches. These challenges have resulted to multiple drug resistance (MDR) and, subsequently, biofilm formation. A type of intercellular communication signal called quorum sensing (QS) has been studied to cause the spread of resistance, thereby enabling a formation of stable community for microorganisms.
View Article and Find Full Text PDFHazardous chemical compounds such as endocrine-disrupting chemicals (EDCs) are widespread and part of the materials we use daily. Among these compounds, bisphenol A (BPA) is the most common endocrine-disrupting chemical and is prevalent due to the chemical raw materials used to manufacture thermoplastic polymers, rigid foams, and industrial coatings. General exposure to endocrine-disrupting chemicals constitutes a serious health hazard, especially to reproductive systems, and can lead to transgenerational diseases in adults due to exposure to these chemicals over several years.
View Article and Find Full Text PDFAcinetobacter baumannii is an infectious agent of global proportion and concern, partly due to its proficiency in development of antibiotic resistance phenotypes and biofilm formation. Dithiocarbamates (DTC) have been identified as possible alternatives to the current antimicrobials. We report here the evaluation of several DTC-metal complexes against A.
View Article and Find Full Text PDFWe present the preparation of octadecylamine-capped ZnS quantum dots from bis(morpholinyldithiocarbamato)Zn(II) complex. The complex was thermolyzed at 130 °C in octadecylamine at different times, to study the effect of reaction time on the morphological and photocatalytic properties of the ZnS quantum dots. Powder X-ray diffraction patterns confirmed a hexagonal wurtzite crystalline phase of ZnS, while HRTEM images showed particle sizes of about 1-3 nm, and energy band gaps of 3.
View Article and Find Full Text PDFBis(4-methylpiperidine-1-carbodithioato)-lead(II) and bis(4-benzylpiperidine-1-carbodithioato)-lead(II) were prepared and their molecular structures elucidated using single crystal X-ray crystallography and spectroscopic techniques. The compounds were used as precursors for the preparation of lead sulphide nano photocatalysts for the degradation of rhodamine B. The single crystal structures of the lead(II) dithiocarbamate complexes show mononuclear lead(II) compounds in which each lead(II) ion coordinates two dithiocarbamato anions in a distorted tetrahedral geometry.
View Article and Find Full Text PDFThe development of nanomaterials with therapeutic and/or diagnostic properties has been an active area of research in biomedical sciences over the past decade. Nanomaterials have been identified as significant medical tools with potential therapeutic and diagnostic capabilities that are practically impossible to accomplish using larger molecules or bulk materials. Fabrication of nanomaterials is the most effective platform to engineer therapeutic agents and delivery systems for the treatment of cancer.
View Article and Find Full Text PDFNanomaterials (Basel)
August 2021
We report the effect of thermolysis time on the morphological and optical properties of CuS nanoparticles prepared from Cu(II) dithiocarbamate single-source precursor. The as-prepared copper sulfide nanoparticles were used as photocatalysts for the degradation of crystal violet (CV), methylene blue (MB), rhodamine B (RhB), and a ternary mixture of the three dyes (CV/MB/RhB). Powder XRD patterns confirmed the hexagonal covellite phase for the CuS nanoparticles.
View Article and Find Full Text PDFSolar-moderated adsorptions of indigo carmine and methylene blue dyes were investigated using manganese and zinc ferrite capped with biochar prepared from the root of . TEM micrograph of the as-prepared manganese ferrite nanocomposites (MnFeO@BC) revealed octagonally shaped particles with an average size of 42.64 nm while the zinc ferrite nanocomposite (ZnFeO@BC) micrograph revealed mixtures of rod- and cone-shaped particles with an average size of 43.
View Article and Find Full Text PDFBis(morpholinyl-4-carbodithioato)-platinum(II) was synthesized and characterized using spectroscopic techniques and single-crystal X-ray crystallography. The Pt(II) complex crystallized in a monoclinic space group 2/ with a Pt(II) ion located on an inversion center coordinated two morpholinyl dithiocarbamate ligands that are coplanar to form a slightly distorted square planar geometry around the Pt(II) ion. The complex was thermolyzed at 120, 180, and 240 °C to prepare PtS nanoparticles.
View Article and Find Full Text PDFAdsorption isotherms are indispensable tools for the description of sorption processes of pollutants on adsorbents. The closeness of the equilibrium concentration (qe) to the calculated solid phase concentration (qe) of the adsorbate, together with the co-efficient of determination (R) and associated errors are important in determining the best goodness-of-fit model. In this work we have investigated the adsorption of Pb(II) and Cr(VI) on a nanocomposite that was prepared using magnetite nanoparticles capped with locally prepared biochar and functionalized using 3-(aminopropyl) triethoxysilane (APTES) at 3 different temperatures.
View Article and Find Full Text PDFThe demand for water is predicted to increase significantly over the coming decades; thus, there is a need to develop an inclusive wastewater decontaminator for the effective management and conservation of water. Magnetic oxide nanocomposites have great potentials as global and novel remediators for wastewater treatment, with robust environmental and economic gains. Environment-responsive nanocomposites would offer wide flexibility to harvest and utilize massive untapped natural energy sources to drive a green economy in tandem with the United Nations Sustainable Development Goals.
View Article and Find Full Text PDFCu(II) and Zn(II) morpholinyldithiocarbamato complexes, formulated as [Cu(MphDTC)] and [Zn(μ-MphDTC)(MphDTC)], where MphDTC is morpholinyldithiocarbamate were synthesized and characterized by elemental analysis, spectroscopic techniques and single-crystal X-ray crystallography. The molecular structure of the Cu(II) complex revealed a mononuclear compound in which the Cu(II) ion was bonded to two morpholinyl dithiocarbamate ligands to form a four-coordinate distorted square planar geometry. The molecular structure of the Zn(II) complex was revealed to be dinuclear, and each metal ion was bonded to two morpholinyl dithiocarbamate bidentate anions, one acting as chelating ligand, the other as a bridge between the two Zn(II) ions.
View Article and Find Full Text PDFThe aim of this mini review was to report the molybdenum compound intervention to control cancer disease. The intervention explains its roles and progress from inorganic molybdenum compounds via organomolybdenum complexes to its nanoparticles to control oesophageal cancer and breast cancer as case studies. Main contributions of molybdenum compounds as anticancer agents could be observed in their nanofibrous support with suitable physicochemical properties, combination therapy, and biosensors (biomarkers).
View Article and Find Full Text PDFProgresses made in previous researches on syntheses of dithiocarbamates led to increase in further researches. This paper reviews concisely the challenges experienced during the synthesis of dithiocarbamate and mechanisms to overcome them in order to obtain accurate results. Aspects of its precursor's uses to synthesize adducts, nanoparticles, and nanocomposites are reported.
View Article and Find Full Text PDFThe Editorial Office has been made aware that the published paper [...
View Article and Find Full Text PDFThe anticancer study of nitrogen-chelating ligands can be of tremendous help in choosing ligands for the anticancer metal complexes design especially with ruthenium(II). The inhibitory anticancer activities of some nitrogen-chelating ligands containing bis-pyrazole, bipyridine, and phenanthroline were studied using experimental screening against cancer cell and theoretical docking methods. anticancer activities showed compound as the most promising inhibitor, and the computational docking further indicates its strong inhibitory activities towards some cancer-related receptors.
View Article and Find Full Text PDFIn this study, Fe(II) complexes of phenyldithiocarbamate, dimethyldithiocarbamate and imidazolyldithiocarbamate were used as single-source precursors to prepare iron sulphide nanoparticles by thermolysis in oleic acid/octadecylamine (ODA) at 180 °C. The nanoparticles were dispersed into hydroxyethyl cellulose (HEC) to prepare iron sulphide/HEC nanocomposites. Ultraviolet-Visible (UV-Vis), Photoluminescence (PL), Fourier Transform Infrared (FTIR), powder X-ray diffraction (pXRD), high-resolution transmission electron microscopy (HRTEM), Field emission scanning electron microscopy (FESEM), and energy dispersive X-ray spectroscopy (EDS) were used to characterize the iron sulphide nanoparticles and corresponding HEC nanocomposites.
View Article and Find Full Text PDFWe herein report the removal of amodiaquine, an emerging drug contaminant from aqueous solution using [Zn(fum)(bpy)] and [ZnO(bdc)] (fum=fumaric acid; bpy=4,4-bipyridine; bdc=benzene-1,4-dicarboxylate) metal-organic frameworks (MOFs) as adsorbents. The adsorbents were characterized by elemental analysis, Fourier transform infrared (FT-IR) spectroscopy, and powder X-ray diffraction (PXRD). Adsorption process for both adsorbents were found to follow the pseudo-first-order kinetics, and the adsorption equilibrium data fitted best into the Freundlich isotherm with the R values of 0.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2017
We report the synthesis and structural studies of copper sulfide nanocrystals from copper (II) dithiocarbamate single molecule precursors. The precursors were thermolysed in hexadecylamine (HDA) to prepare HDA-capped CuS nanocrystals. The optical properties of the nanocrystals studied using UV-visible and photoluminescence spectroscopy showed absorption band edges at 287 nm that are blue shifted, and the photoluminescence spectra show emission curves that are red-shifted with respect to the absorption band edges.
View Article and Find Full Text PDF