Reversible phosphorylation is a pervasive regulatory event in cellular physiology controlled by reciprocal actions of protein kinases and phosphatases. Determining the inherent substrate specificity of kinases and phosphatases is essential for understanding their cellular roles. Synthetic peptides have long served as substrate proxies for defining intrinsic kinase and phosphatase specificities.
View Article and Find Full Text PDFPurpose: Although zebrafish rods begin to develop as early as 2 days postfertilization (dpf), they are not deemed anatomically mature and functional until 15 to 21 dpf. A recent study detected a small electroretinogram (ERG) from rods in a cone mutant called no optokinetic response f (nof) at 5 dpf, suggesting that young rods are functional. Whether they can mediate behavioral responses in larvae is unknown.
View Article and Find Full Text PDFPlants produce several hundreds of thousands of secondary metabolites that are important for adaptation to various environmental conditions. Although different groups of secondary metabolites are synthesized through unique biosynthetic pathways, plants must orchestrate their production simultaneously. Phenylpropanoids and glucosinolates are two classes of secondary metabolites that are synthesized through apparently independent biosynthetic pathways.
View Article and Find Full Text PDFSelective, tissue-specific gene expression is facilitated by the epigenetic modification H3K27me3 (trimethylation of lysine 27 on histone H3) in plants and animals. Much remains to be learned about how H3K27me3-enriched chromatin states are constructed and maintained. Here, we identify a genetic interaction in between the chromodomain helicase DNA binding chromatin remodeler PICKLE (PKL), which promotes H3K27me3 enrichment, and the SWR1-family remodeler PHOTOPERIOD INDEPENDENT EARLY FLOWERING1 (PIE1), which incorporates the histone variant H2A.
View Article and Find Full Text PDFEnzalutamide is a second-generation nonsteroidal antiandrogen clinically approved for the treatment of castration-resistant prostate cancer (CRPC), yet resistance to endocrine therapy has limited its success in this setting. Although the androgen receptor (AR) has been associated with therapy failure, the mechanisms underlying this failure have not been elucidated. Bioinformatics analysis predicted that activation of the Wnt/β-catenin pathway and its interaction with AR play a major role in acquisition of enzalutamide resistance.
View Article and Find Full Text PDFEukaryotes use a temporally regulated process, known as the replication timing program, to ensure that their genomes are fully and accurately duplicated during S phase. Replication timing programs are predictive of genomic features and activity and are considered to be functional readouts of chromatin organization. Although replication timing programs have been described for yeast and animal systems, much less is known about the temporal regulation of plant DNA replication or its relationship to genome sequence and chromatin structure.
View Article and Find Full Text PDFCells fine-tune their metabolic programs according to nutrient availability in order to maintain homeostasis. This is achieved largely through integrating signaling pathways and the gene expression program, allowing cells to adapt to nutritional change. Dbp2, a member of the DEAD-box RNA helicase family in , has been proposed to integrate gene expression with cellular metabolism.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
August 2017
Background: Inhibition of Hsp90 is desirable due to potential downregulation of oncogenic clients. Early generation inhibitors bind to the N-terminal domain (NTD) but C-terminal domain (CTD) inhibitors are a promising class because they do not induce a heat shock response. Here we present a new structural class of CTD binding molecules with a unique allosteric inhibition mechanism.
View Article and Find Full Text PDFCurrent antifungal therapies have limited effectiveness in treating invasive fungal infections. Furthermore, the development of new antifungal is currently unable to keep pace with the urgent demand for safe and effective new drugs. Auranofin, an FDA-approved drug for the treatment of rheumatoid arthritis, inhibits growth of a diverse array of clinical isolates of fungi and represents a new antifungal agent with a previously unexploited mechanism of action.
View Article and Find Full Text PDFBackground: Ebselen, an organoselenium compound and a clinically safe molecule has been reported to possess potent antifungal activity, but its antifungal mechanism of action and in vivo antifungal activity remain unclear.
Methods: The antifungal effect of ebselen was tested against Candida albicans, C. glabrata, C.
Background & Aims: Hepatocytes in which the hepatitis B virus (HBV) is replicating exhibit loss of the chromatin modifying polycomb repressive complex 2 (PRC2), resulting in re-expression of specific, cellular PRC2-repressed genes. Epithelial cell adhesion molecule (EpCAM) is a PRC2-repressed gene, normally expressed in hepatic progenitors, but re-expressed in hepatic cancer stem cells (hCSCs). Herein, we investigated the functional significance of EpCAM re-expression in HBV-mediated hepatocarcinogenesis.
View Article and Find Full Text PDFThe Spt-Ada-Gcn5 Acetyltransferase (SAGA) complex is a transcriptional coactivator with histone acetylase and deubiquitinase activities that plays an important role in visual development and function. In Drosophila melanogaster, four SAGA subunits are required for the deubiquitination of monoubiquitinated histone H2B (ubH2B): Nonstop, Sgf11, E(y)2, and Ataxin 7. Mutations that disrupt SAGA deubiquitinase activity cause defects in neuronal connectivity in the developing Drosophila visual system.
View Article and Find Full Text PDFUnlabelled: The NCI-60 human tumor cell line panel is an invaluable resource for cancer researchers, providing drug sensitivity, molecular and phenotypic data for a range of cancer types. CellMiner is a web resource that provides tools for the acquisition and analysis of quality-controlled NCI-60 data. CellMiner supports queries of up to 150 drugs or genes, but the output is an Excel file for each drug or gene.
View Article and Find Full Text PDFLong non-coding (lnc)RNAs, once thought to merely represent noise from imprecise transcription initiation, have now emerged as major regulatory entities in all eukaryotes. In contrast to the rapidly expanding identification of individual lncRNAs, mechanistic characterization has lagged behind. Here we provide evidence that the GAL lncRNAs in the budding yeast S.
View Article and Find Full Text PDFNumerous studies by our lab and others demonstrate that epidermal growth factor receptor (EGFR) plays critical roles in primary breast cancer (BC) initiation, growth and dissemination. However, clinical trials targeting EGFR function in BC have lead to disappointing results. In the current study we sought to identify the mechanisms responsible for this disparity by investigating the function of EGFR across the continuum of the metastatic cascade.
View Article and Find Full Text PDFScaffold or matrix attachment regions (S/MARs) are found in all eukaryotes. The pattern of distribution and genomic context of S/MARs is thought to be important for processes such as chromatin organization and modulation of gene expression. Despite the importance of such processes, much is unknown about the large-scale distribution and sequence content of S/MARs in vivo.
View Article and Find Full Text PDFThe AvrPto protein from Pseudomonas syringae pv tomato is delivered into plant cells by the bacterial type III secretion system, where it either promotes host susceptibility or, in tomato plants expressing the Pto kinase, elicits disease resistance. Using two-dimensional gel electrophoresis, we obtained evidence that AvrPto is phosphorylated when expressed in plant leaves. In vitro phosphorylation of AvrPto by plant extracts occurs independently of Pto and is due to a kinase activity that is conserved in tomato (Solanum lycopersicum), tobacco (Nicotiana tabacum), and Arabidopsis thaliana.
View Article and Find Full Text PDFPseudomonas syringae pv. tomato, the causative agent of bacterial speck disease of tomato, uses a type III secretion system (TTSS) to deliver effector proteins into the host cell. In resistant plants, the bacterial effector protein AvrPto physically interacts with the host Pto kinase and elicits antibacterial defense responses.
View Article and Find Full Text PDF