Publications by authors named "Pete H Hutson"

A series of N-heterocyclic pyridinone catechol-O-methyltransferase (COMT) inhibitors were synthesized. Physicochemical properties, including ligand lipophilic efficiency (LLE) and clogP, were used to guide compound design and attempt to improve inhibitor pharmacokinetics. Incorporation of heterocyclic central rings provided improvements in physicochemical parameters but did not significantly reduce in vitro or in vivo clearance.

View Article and Find Full Text PDF

3-Hydroxy-4-pyridinones and 5-hydroxy-4-pyrimidinones were identified as inhibitors of catechol-O-methyltransferase (COMT) in a high-throughput screen. These heterocyclic catechol mimics exhibit potent inhibition of the enzyme and an improved toxicity profile versus the marketed nitrocatechol inhibitors tolcapone and entacapone. Optimization of the series was aided by X-ray cocrystal structures of the novel inhibitors in complex with COMT and cofactors SAM and Mg(2+).

View Article and Find Full Text PDF

The orexinergic system has been implicated in a number of behaviors, including reward and incentive motivation. Orexin 1 receptor antagonism has been reported to reduce drug self-administration, conditioned place preference, and reinstatement in rodents, but the role of the orexin 2 receptor is unclear. Here we evaluated the impact of the novel and selective orexin 2 receptor antagonist, 2-SORA 18, on motivation for nicotine as measured by responding on a progressive ratio schedule, as well as cue-induced reinstatement of a response previously associated with nicotine reward, and nicotine-induced reinstatement.

View Article and Find Full Text PDF

Reduced dopamine neurotransmission in the prefrontal cortex has been implicated as causal for the negative symptoms and cognitive deficit associated with schizophrenia; thus, a compound which selectively enhances dopamine neurotransmission in the prefrontal cortex may have therapeutic potential. Inhibition of catechol-O-methyltransferase (COMT, EC 2.1.

View Article and Find Full Text PDF

Objective: Preclinical models, receptor localization, and genetic linkage data support the role of D4 receptors in the etiology of ADHD. This proof-of-concept study was designed to evaluate MK-0929, a selective D4 receptor antagonist as treatment for adult ADHD.

Method: A randomized, double-blind, placebo-controlled, crossover study was conducted in adults with primary ADHD.

View Article and Find Full Text PDF

Numerous changes occur during aging and Alzheimer's disease (AD) progression, including a decline in cholinergic functioning and cognition, as well as alterations in gene expression and activity in the nitric oxide/cyclic guanosine monophosphate (NO/cGMP) pathway. Donepezil, the current standard of care for Alzheimer's disease, improves cholinergic functioning and has demonstrated effects on multiple domains of cognition, including memory and attention in both preclinical species and patients. We previously found that increasing activation of the NO/cGMP pathway via phosphodiesterase 9 (PDE9) inhibition also improves memory in rodents and suggested that PDE9 might be a promising target for novel treatments for AD.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how repeated administration of a metabotropic glutamate receptor 5 positive allosteric modulator (CDPPB) affects anti-psychotic-like effects in a rat model of schizophrenia.
  • CDPPB acutely reduces amphetamine-induced hyperlocomotion, but with repeated dosing over 7 days, the effects vary by brain region, showing tolerance in the frontal cortex but not in the striatum.
  • These findings highlight that receptor desensitization is region-specific and may influence both sleep architecture and response to psychostimulants differently.
View Article and Find Full Text PDF

T-type calcium channels are important in burst firing and expressed in brain regions implicated in schizophrenia. Therefore, we examined the effects of novel selective T-type calcium channel antagonists in preclinical assays predictive of antipsychotic-like activity. TTA-A2 blocked the psychostimulant effects of amphetamine and MK-801 and decreased conditioned avoidance responding.

View Article and Find Full Text PDF

Novel oxazolobenzimidazoles are described as potent and selective positive allosteric modulators of the metabotropic glutamate receptor 2. The discovery of this class and optimization of its physical and pharmacokinetic properties led to the identification of potent and orally bioavailable compounds (20 and 21) as advanced leads. Compound 20 (TBPCOB) was shown to have robust activity in a PCP-induced hyperlocomotion model in rat, an assay responsive to clinical antipsychotic treatments for schizophrenia.

View Article and Find Full Text PDF

Background: Recent evidence suggests an involvement of T-type calcium channels in the effects of drugs of abuse.

Methods: We examined the influence of the novel, potent, and selective T-type calcium channel antagonist [2-(4-cyclopropylphenyl)-N-((1R)-1-{5-[2,2,2-trifluoroethyl]oxo}pyridine-2-yl)ethyl]acetamide] (TTA-A2) (.3, 1, or 3 mg/kg) on motivation for nicotine, as measured by nicotine self-administration on a progressive ratio (PR) schedule, and nicotine- and cue-induced reinstatement for a response previously reinforced with nicotine delivery (n = 11 or 12 Long Evans rats/group).

View Article and Find Full Text PDF

Hit to lead optimization of (5R)-5-hexyl-3-phenyl-1,3-oxazolidin-2-one as a positive allosteric modulator of mGluR2 is described. Improvements in potency and metabolic stability were achieved through SAR on both ends of the oxazolidinone. An optimized lead compound was found to be brain penetrant and active in a rat ketamine-induced hyperlocomotion model for antipsychotic activity.

View Article and Find Full Text PDF

Rationale: Compounds which decrease NMDA receptor functioning, such as PCP and ketamine have abuse liability, whereas co-agonists of the NMDA receptor attenuate some of the behavioral and neurochemical effects of stimulant drugs. Here we examined the effects of a glycine transporter (GlyT1) inhibitor, which elevates glycine and hence NMDA signaling, on the behavioral effects of nicotine.

Objectives: To examine the influence of a novel potent, selective, and brain penetrant GlyT1 inhibitor, compound 5 {(2-chloro-N-[1-(ethylsulfonyl)-4-isobutylpiperidin-4-yl]methyl)}-4-(trifluoromethyl)benzamide; human IC(50)=22 nM; rat=30 nM), on nicotine-induced potentiation of progressive ratio responding for a food reward and nicotine- and food-induced cue-potentiated reinstatement for a response previously paired with sucrose.

View Article and Find Full Text PDF

Rationale: It was recently reported that administration of the metabotropic glutamate 2 and 3 (mGlu2/3) receptor agonist prodrug LY2140023 to schizophrenic patients decreased positive symptoms. However, at the single, potentially suboptimal, dose that was tested, LY2140023 trended towards being inferior to olanzapine on several indices of efficacy within the Positive and Negative Syndrome Scale.

Objectives: In this study, we examined whether the antipsychotic potential of mGlu2/3 receptor agonism can be enhanced with 5-HT(2A) receptor antagonism.

View Article and Find Full Text PDF

In the search for strategies to treat schizophrenia, attention has focused on enhancing NMDA receptor function. In vitro experiments show that metabotropic glutamate 5 receptor (mGluR5) activation enhances NMDA receptor activity, and in vivo experiments indicate that mGluR5 positive allosteric modulators (PAMs) are effective in preclinical assays measuring antipsychotic potential and cognition. Here we characterized the dose-effect function of CDPPB (3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide), an mGluR5 PAM, on novel object recognition memory in unimpaired Wistar Hannover rats (0, 10 or 30 mg/kg CDPPB) and animals with an MK-801-induced deficit (0, 3, 10, or 30 mg/kg CDPPB).

View Article and Find Full Text PDF

The 'NMDA hypofunction hypothesis of schizophrenia' can be tested in a number of ways. DAO is the enzyme primarily responsible for the metabolism of d-serine, a co-agonist for the NMDA receptor. We identified novel DAO inhibitors, in particular, acid 1, which demonstrated moderate potency for DAO in vitro and ex vivo, and raised plasma d-serine levels after dosing ip to rats.

View Article and Find Full Text PDF

The postnatal development of the binding of the GABA(A) receptor agonist [(3)H]gaboxadol in rat brain was investigated. Using brain tissue from rats obtained at postnatal days 1, 10, 25, and >25 (adult), the binding of [(3)H]gaboxadol and the benzodiazepine [(3)H]flunitrazepam to GABA(A) receptors was compared in homogenate binding assays and quantitative receptor autoradiography. Kinetic and equilibrium data obtained in homogenate binding studies revealed two different [(3)H]gaboxadol affinities.

View Article and Find Full Text PDF

Homoquinolinate, a derivative of the endogenous NMDA agonist, quinolinate, has been shown to display higher affinity for Xenopus oocytes expressing NR2A- and NR2B-containing receptors, compared to NR2C- and NR2D-containing receptors, whilst autoradiographical experiments subsequently showed that [3H]homoquinolinate labelled a subpopulation of NMDA receptors in rat brain sections, with a similar distribution to NR2B-containing receptors. In this study, we have shown that NMDA-specific [3H]homoquinolinate binding to rat brain membranes comprised 44% of total binding with a Bmax value of 5.73 pmol/mg protein, which was inhibited by NMDA with Ki=0.

View Article and Find Full Text PDF