Publications by authors named "Pete Edwards"

This paper provides an overview of the INGENIOUS (UnderstandING the sourcEs, traNsformations and fates of IndOor air pollUtantS) project, aiming to better understand air pollution in homes. Although our homes are the microenvironment in which we spend most of our time, we know relatively little about the sources, transformation processes and fates of indoor air pollutants, or our exposure to them. INGENIOUS aims to address this knowledge gap by delivering: an indoor emissions inventory for UK homes; comprehensive air pollutant measurements in 310 homes in Bradford using a combination of low cost-sensors and more advanced air quality instrumentation; an analysis of the impact of indoor air pollution on outdoor air quality and using mobile measurements; insight into future indoor air quality using detailed air pollution models; identification of indoor air pollutants that warrant further toxicological study; and better understanding of the barriers and facilitators for behaviour that drives improved indoor air quality.

View Article and Find Full Text PDF

The QUANT study represents the most extensive open-access evaluation of commercial air quality sensor systems to date. This comprehensive study assessed 49 systems from 14 manufacturers across three urban sites in the UK over a three-year period. The resulting open-access dataset captures high time-resolution measurements of a variety of gasses (NO, NO, O, CO, CO), particulate matter (PM, PM, PM), and key meteorological parameters (humidity, temperature, atmospheric pressure).

View Article and Find Full Text PDF

Introduction: Relative to outdoor air pollution, there is little evidence examining the composition and concentrations of indoor air pollution and its associated health impacts. The INGENIOUS project aims to provide the comprehensive understanding of indoor air pollution in UK homes.

Methods And Analysis: 'Real Home Assessment' is a cross-sectional, multimethod study within INGENIOUS.

View Article and Find Full Text PDF

Delhi, India, suffers from periods of very poor air quality, but little is known about the chemical production of secondary pollutants in this highly polluted environment. During the postmonsoon period in 2018, extremely high nighttime concentrations of NO (NO and NO) and volatile organic compounds (VOCs) were observed, with median NO mixing ratios of ∼200 ppbV (maximum of ∼700 ppbV). A detailed chemical box model constrained to a comprehensive suite of speciated VOC and NO measurements revealed very low nighttime concentrations of oxidants, NO, O, and OH, driven by high nighttime NO concentrations.

View Article and Find Full Text PDF

Particulate nitrate ([Formula: see text]) has long been considered a permanent sink for NO (NO and NO), removing a gaseous pollutant that is central to air quality and that influences the global self-cleansing capacity of the atmosphere. Evidence is emerging that photolysis of [Formula: see text] can recycle HONO and NO back to the gas phase with potentially important implications for tropospheric ozone and OH budgets; however, there are substantial discrepancies in "renoxification" photolysis rate constants. Using aircraft and ground-based HONO observations in the remote Atlantic troposphere, we show evidence for renoxification occurring on mixed marine aerosols with an efficiency that increases with relative humidity and decreases with the concentration of [Formula: see text], thus largely reconciling the very large discrepancies in renoxification photolysis rate constants found across multiple laboratory and field studies.

View Article and Find Full Text PDF

Biomass burning (BB) is a large source of reactive compounds in the atmosphere. While the daytime photochemistry of BB emissions has been studied in some detail, there has been little focus on nighttime reactions despite the potential for substantial oxidative and heterogeneous chemistry. Here, we present the first analysis of nighttime aircraft intercepts of agricultural BB plumes using observations from the NOAA WP-3D aircraft during the 2013 Southeast Nexus (SENEX) campaign.

View Article and Find Full Text PDF