Most drug delivery systems as treatment modalities for osteomyelitis have not been evaluated for resistant infections. Tigecycline (TG) is an antimicrobial agent that could be used in the treatment of multi-drug-resistant orthopedic infections. The objective of this in vitro study has been to determine what dosage of TG causes changes in the morphology and number of osteoblasts.
View Article and Find Full Text PDFThe purpose of the study presented in this paper has been to examine the possibility of the synthesis of a new nanoparticulate system for controlled and systemic drug delivery with double effect. In the first step, a drug is released from bioresorbable polymer; in the second stage, after resorption of the polymer, non-bioresorbable calcium phosphate remains the chief part of the particle and takes the role of a filler, filling a bone defect. The obtained tigecycline-loaded calcium-phosphate(CP)/poly(DL-lactide-co-glycolide)(PLGA) nanoparticles contain calcium phosphate coated with bioresorbable polymer.
View Article and Find Full Text PDFReconstruction of bone defects is one of the major therapeutic goals in various clinical fields. Bone replacement materials must satisfy a number of criteria. Biological criteria are biocompatibility, controlled biodegradability, and osteoconductive or even osteogenic potential.
View Article and Find Full Text PDF