Background: The utility of routine extensive molecular profiling of pediatric tumors is a matter of debate due to the high number of genetic alterations of unknown significance or low evidence and the lack of standardized and personalized decision support methods. Digital drug assignment (DDA) is a novel computational method to prioritize treatment options by aggregating numerous evidence-based associations between multiple drivers, targets, and targeted agents. DDA has been validated to improve personalized treatment decisions based on the outcome data of adult patients treated in the SHIVA01 clinical trial.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
December 2021
A sterically stabilized unilamellar nanocarrier vesicle (SSV) system containing dipalmitoylphosphatidylcholine, cholesterol, ursolic acid and PEGylated phospholipid has been developed by exploiting the structural advantages of ursolic acid: by spontaneously attaching to the lipid head groups, it induces curvature at the outer side of the bilayers, allowing the preparation of size-limited vesicles without extrusion. Ursolic acid (UA) also interacts with the PEG chains, supporting steric stabilization even when the amount of PEGylated phospholipid is reduced. Using fluorescence immunohistochemistry, vesicles containing ursolic acid (UA-SSVs) were found to accumulate in the tumor in 3 h on xenografted mouse, suggesting the potential use of these vesicles for passive tumor targeting.
View Article and Find Full Text PDFBackground: We present the case of a 50-year-old female whose metastatic pancreatic neuroendocrine tumor (pNET) diagnosis was delayed by the COVID-19 pandemic. The patient was in critical condition at the time of diagnosis due to the extensive tumor burden and failing liver functions. The clinical dilemma was to choose between two registered first-line molecularly-targeted agents (MTAs), sunitinib or everolimus, or to use chemotherapy to quickly reduce tumor burden.
View Article and Find Full Text PDFPrecision oncology is currently based on pairing molecularly targeted agents (MTA) to predefined single driver genes or biomarkers. Each tumor harbors a combination of a large number of potential genetic alterations of multiple driver genes in a complex system that limits the potential of this approach. We have developed an artificial intelligence (AI)-assisted computational method, the digital drug-assignment (DDA) system, to prioritize potential MTAs for each cancer patient based on the complex individual molecular profile of their tumor.
View Article and Find Full Text PDFSquamous cell carcinomas (SCCs) are among the most frequent solid tumors in humans. SCCs, related or not to the human papillomavirus, share common molecular features. Immunotherapies, and specifically immune checkpoint inhibitors, have been shown to improve overall survival in multiple cancer types, including SCCs.
View Article and Find Full Text PDFMagy Onkol
September 2020
More than 6 million mutations of more than 600 cancer genes can occur in over 200 tumor types according to the COSMIC (Catalogue of Somatic Mutations in Cancer) database. The theoretical combination of all "driver" alterations and tumor types adds up to an enormous number. Therefore, there is a legitimate need to use the same targeted therapy in the presence of its target and mechanism of action in multiple tumor types.
View Article and Find Full Text PDFBackground: The anaplastic lymphoma kinase () gene fusion rearrangement is a potent oncogene, accounting for 2-7% of lung adenocarcinomas, with higher incidence (17-20%) in non-smokers. -positive tumors are sensitive to ALK tyrosine kinase inhibitors (TKIs), thus -positive non-small-cell lung cancer (NSCLC) is currently spearheading precision medicine in thoracic oncology, with three generations of approved ALK inhibitors in clinical practice. However, these treatments are eventually met with resistance.
View Article and Find Full Text PDFSystematic, structured and longitudinal collection of realtime Big Patient Data and the analysis of aggregated diagnostic, therapeutic and therapy response data of onco-hematologic patients leads to the development of nationwide dynamic disease registries providing a platform for medical, health industrial and data science research, hospital and health insurance cost analysis, measurement of innovative diagnostics and therapeutics performance, evaluation of compassion-based treatments and general support for insurance and health policy decisions. First in Hungary, we developed a complex computerized case management, data collection, processing, and analysis program (OncoGenomic) and a self-learning artificial intelligence (AI) precision medicine decision support application (Oncompass Calculator) that organize basic research (R), applied research and development (R and D) and innovation (I) under a common umbrella. These progams support the national dynamic hematologic disease registry.
View Article and Find Full Text PDFThe poor prognosis of head and neck squamous cell carcinoma (HNSCC) is partly due to the lack of reliable predictive markers. Connexin 43 (Cx43) protein and its cell-communication channels have been assigned tumor suppressor functions while the anti-apoptotic Bcl-2 (B-cell lymphoma-2) protein has been associated with negative prognostic significance in cancer. This study aimed to test the role of Cx43 protein on Bcl-2 expression, tumor progression and response to taxane-based treatment in HNSCC.
View Article and Find Full Text PDFSeveral promising anti-cancer drug-GnRH (gonadotropin-releasing hormone) conjugates have been developed in the last two decades, although none of them have been approved for clinical use yet. Crizotinib is an effective multi-target kinase inhibitor, approved against anaplastic lymphoma kinase (ALK)- or ROS proto-oncogene 1 (ROS-1)-positive non-small cell lung carcinoma (NSCLC); however, its application is accompanied by serious side effects. In order to deliver crizotinib selectively into the tumor cells, we synthesized novel crizotinib analogues and conjugated them to a [d-Lys]-GnRH-I targeting peptide.
View Article and Find Full Text PDFTargeted therapies against cancer types with more than one driver gene hold bright but elusive promise, since approved drugs are not available for all driver mutations and monotherapies often result in resistance. Targeting multiple driver genes in different pathways at the same time may provide an impact extensive enough to fight resistance. Our goal was to find synergistic drug combinations based on the availability of targeted drugs and their biological activity profiles and created an associated compound library based on driver gene-related protein targets.
View Article and Find Full Text PDFPancreatic cancer is an increasing cause of cancer related death worldwide. KRAS is the dominant oncogene in this cancer type and molecular rationale would indicate, that inhibitors of the downstream target MEK could be appropriate targeted agents, but clinical trials have failed so far to achieve statistically significant benefit in unselected patients. We aimed to identify predictive molecular biomarkers that can help to define subgroups where MEK inhibitors might be beneficial alone or in combination.
View Article and Find Full Text PDFSince the prognosis of advanced cholangiocarcinoma (CCA) remains poor with traditional chemotherapy, attention has shifted to molecularly targeted agents. Results of available clinical studies reveal little or no benefit of using targeted agents in advanced CCA. Limitations of these trials could be the lack of comprehensive molecular and genetic characterization of CCA samples in order to identify potential drug targets.
View Article and Find Full Text PDFHead and neck cancer treatment protocols still lack well-established biomarkers of prognostic and predictive value. It is well known that human papillomavirus (HPV)-related and non-HPV-related oropharyngeal cancers are distinct entities concerning tumor biology and clinical outcome. However, there is an ongoing debate whether tumor suppressor p16 status alone or both p16 and HPV detection should be used in clinical settings.
View Article and Find Full Text PDFThe incidence of head and neck squamous cell carcinomas is still growing, and the long-term prognosis of advanced disease remains poor. Only a fraction of head and neck cancers are sensitive to the EGFR-inhibitor cetuximab, which is the only registered targeted therapy available today. In several cancers, gene copy number alterations of MET and PIK3CA have been found to be prognostic and predictive for therapy response.
View Article and Find Full Text PDFBackground: Rheumatoid Arthritis is a chronic disease leading to decreased quality of life with a rather variable response rate to Disease Modifying Anti Rheumatic Drugs. Methotrexate (MTX) is the gold standard therapy in Rheumatoid Arthritis. The Multidrug resistance Related Protein and Multi Drug Resistance protein 1, also called P-glycoprotein-170 transporters can alter the intracellular concentration of different drugs.
View Article and Find Full Text PDFAppl Immunohistochem Mol Morphol
August 2016
Gap juctions are transmembrane communication channels known to be involved in the control of cell proliferation by mediating the exchange of ions and small molecules between cells. Gap junctions are composed of connexon hemichannels made up of 6 connexin proteins, which abnormal expression and functions have been linked to tumor progression and poorer prognosis. Here, we studied the prognostic impact of the most prevalent connexin isotype, connexin 43 (Cx43) in head and neck squamous cell carcinomas (HNSCC).
View Article and Find Full Text PDFThe embryonal tumor with abundant neuropil and true rosettes is a rare and highly malignant variant of embryonal brain tumors. It usually affects infants and young children under the age of 4 years and exhibits a very aggressive course with a dismal prognosis. For the 68 cases reported to date the mean age at diagnosis was 25.
View Article and Find Full Text PDFBackground: The ATP-Binding Cassette (ABC)-transporter MultiDrug Resistance Protein 1 (MDR1) and Multidrug Resistance Related Protein 1 (MRP1) are expressed on the surface of enterocytes, which has led to the belief that these high capacity transporters are responsible for modulating chemosensitvity of colorectal cancer. Several immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR) studies have provided controversial results in regards to the expression levels of these two ABC-transporters in colorectal cancer. Our study was designed to determine the yet uninvestigated functional activity of MDR1 and MRP1 transporters in normal human enterocytes compared to colorectal cancer cells from surgical biopsies.
View Article and Find Full Text PDFActivating mutations in the epidermal growth factor receptor (EGFR) have been identified in a subset of non-small cell lung cancer (NSCLC), which is one of the leading cancer types worldwide. Application of EGFR tyrosine kinase inhibitors leads to acquired resistance by secondary EGFR mutations or by amplification of the hepatocyte growth factor receptor (c-Met) gene. Although several EGFR and c-Met inhibitors have been reported, potent dual EGFR/c-Met inhibitors, which can overcome this latter resistance mechanism, have hitherto not been published and have not reached clinical trials.
View Article and Find Full Text PDFThe epidermal growth factor receptor (EGFR) family has been well-known for more than ten years as the target of non-small lung carcinoma (NSCLC) which is one of the leading cause of mortality among the cancer types. The receptor tyrosine kinase inhibitors (gefitinib, erlotinib, lapatinib) which have been applied in the therapy, are not able to inhibit the progression of this disease perfectly because of resistance. It has been demonstrated that the amplification of mesenchymal-epithelial transition factor (c-Met) or secondary mutation of EGFR kinase causes the resistance against EGFR inhibitors in 18-20 percent of the cases.
View Article and Find Full Text PDFThe initial radiotherapy of a 73 years old Caucasian male patient with advanced squamous cell lung carcinoma was terminated due to severe pericarditis. Subsequently, the tumor sample was analyzed for possible targets with comprehensive molecular diagnostics. EGFR, KRAS and PIK3CA genes were wild type, ALK and ROS1 were negative for rearrangement, but c-MET was amplified by fluorescent in situ hybridization.
View Article and Find Full Text PDF