Publications by authors named "Peta Burns"

Macrocyclic analogues of the linear hexapeptide, angiotensin IV (AngIV) have proved to be potent inhibitors of insulin-regulated aminopeptidase (IRAP, oxytocinase, EC 3.4.11.

View Article and Find Full Text PDF

Ethyl2-acetylamino-7-hydroxy-4-pyridin-3-yl-4H-chromene-3-carboxylate (HFI-419), the benzopyran-based inhibitor of insulin-regulated aminopeptidase (IRAP), has previously been shown to improve spatial working and recognition memory in rodents. However, the mechanism of its cognitive-enhancing effect remains unknown. There is a close correlation between dendritic spine density and learning in vivo and several studies suggest that increases in neuronal glucose uptake and/or alterations to the activity of matrix metalloproteinases (MMPs) may improve memory and increase dendritic spine density.

View Article and Find Full Text PDF

Oxytocin, and the closely related neuropeptide, vasopressin, are both known to modulate social behaviours. The pro-social effects of oxytocin are well-documented and have generated much interest into its suitability as a therapeutic for disorders characterised by social dysfunction. This study investigated the social phenotype of mice with a targeted deletion of the gene for insulin-regulated aminopeptidase, an enzyme involved in the degradation of oxytocin and vasopressin.

View Article and Find Full Text PDF

Insulin-regulated aminopeptidase (IRAP) co-localizes with the glucose transporter 4 (GLUT4) in GLUT4 storage vesicles (GSV) in insulin-responsive cells. In response to insulin, IRAP is the only transmembrane enzyme known to translocate together with GLUT4 to the plasma membrane in adipocytes and muscle cells. Although the intracellular region of IRAP is associated with GLUT4 vesicle trafficking, the role of the aminopeptidase activity in insulin-responsive cells has not been elucidated.

View Article and Find Full Text PDF

Central infusion of Insulin-Regulated Aminopeptidase (IRAP) inhibitors improves memory in both normal rodents and in models of memory deficit. However, in contrast, the global IRAP knockout mice (KO) demonstrate age-accelerated spatial memory deficits and no improvements in performance in any memory tasks. Potentially, the observed memory deficit could be due to the absence of IRAP in the developing brain.

View Article and Find Full Text PDF

The AT(4) ligands, angiotensin IV and LVV-hemorphin 7, elicit robust effects on facilitating memory by binding to a specific site in the brain historically termed the angiotensin AT(4) receptor. The identification of the AT(4) receptor as insulin-regulated aminopeptidase (IRAP) is controversial, with other proteins speculated to be the target(s) of these peptides. In this study we have utilized IRAP knockout mice to investigate IRAP in the brain.

View Article and Find Full Text PDF

During mammalian pregnancy, body temperature decreases and there are changes in fluid and electrolyte balance. Angiotensin signaling mechanisms in the brain have been shown to influence thermoregulation and body fluid balance in the nonpregnant state. We hypothesized that brain angiotensin is also implicated in adjusting these physiological systems in the pregnant rat.

View Article and Find Full Text PDF

Central administration of angiotensin IV (Ang IV) analogues attenuates scopolamine-induced amnesia. Ang IV mediates its effects by binding to a high affinity, binding site, AT(4) receptor, that has recently been identified as insulin regulated aminopeptidase (IRAP). The purpose of this study was to examine the effect of the distinct AT(4) ligand, LVV-hemorphin-7 (LVV-H7), on scopolamine-induced learning deficits, one which involves fear-conditioning and the other spatial learning.

View Article and Find Full Text PDF