Publications by authors named "Peta A Neale"

Pharmaceutical compounds in wastewater have emerged as a significant concern for the aquatic environment. The use of in vitro bioassays represents a sustainable and cost-effective approach for assessing the potential toxicological risks of these biologically active compounds in wastewater and aligns with ethical considerations in research. It facilitates high-throughput analysis, captures mixture effects, integrates impacts of both known and unknown chemicals, and reduces reliance on animal testing.

View Article and Find Full Text PDF

Microplastics (MPs) accumulating in freshwater sediment have raised concerns about potential risks to benthic dwelling organisms, yet few studies have examined the long-term impacts caused by MP exposure. This study investigated alterations to lipid profiles in an Australian freshwater invertebrate, Chironomus tepperi, induced by polyethylene MP fragments (1-45 μm) at environmentally relevant concentrations (125, 250, 500 and 1000 MPs/kg sediment), using a two-generational experimental design. In the parental generation, the relative abundance of triacylglycerols, total fatty acids and unsaturated fatty acids exhibited apparent hormetic patterns, with low-concentration stimulation and high-concentration inhibition observed.

View Article and Find Full Text PDF

The presence of numerous chemical contaminants from industrial, agricultural, and pharmaceutical sources in water supplies poses a potential risk to human and ecological health. Current chemical analyses suffer from limitations, including chemical coverage and high cost, and broad-coverage assays such as transcriptomics may further improve water quality monitoring by assessing a large range of possible effects. Here, we used high-throughput transcriptomics to assess the activity induced by field-derived water extracts in MCF7 breast carcinoma cells.

View Article and Find Full Text PDF

Chemical contaminants, such as pesticides, pharmaceuticals and industrial compounds are ubiquitous in surface water and sediment in areas subject to human activity. While targeted chemical analysis is typically used for water and sediment quality monitoring, there is growing interest in applying effect-based methods with in vitro bioassays to capture the effects of all active contaminants in a sample. The current study evaluated the biological effects in surface water and sediment from two contrasting catchments in Aotearoa New Zealand, the highly urbanised Whau River catchment in Tāmaki Makaurau (Auckland) and the urban and mixed agricultural Koreti (New River) Estuary catchment.

View Article and Find Full Text PDF

The widespread presence of contaminants of emerging concern (CEC) in surface waters, treated wastewater and drinking water is an ongoing issue for the water industry. The absence of regulatory guidance and limited occurrence, toxicity and removal data are defining criteria of CEC and make it difficult to prioritise which CEC pose the greatest risk. The online Emerging CHemIcals Database for National Awareness (ECHIDNA) aims to classify and prioritise CEC based on their potential risk, with the information presented in an easily accessible and intuitive manner.

View Article and Find Full Text PDF

Pesticides applied to agricultural land have been shown to decrease the quality of water entering the Great Barrier Reef lagoon. This issue is addressed by the Reef 2050 Water Quality Improvement Plan which includes a pesticide reduction target. As part of a wider educational strategy, one method that could help meet the target is to provide stakeholders with information that assists in the selection and use of pesticide active ingredients (PAIs) that pose a lower risk to aquatic environments compared to those currently used.

View Article and Find Full Text PDF

The accumulation of microplastics (MPs) in sediments could pose risks to benthic organisms and their progeny. Here, we examined effects on traditional apical endpoints along with changes to whole body metabolite profiles induced by irregular shaped polyethylene MPs (1-45 µm) at environmentally relevant concentrations (125, 250, 500 and 1000 MPs/kg sediment) in Chironomus tepperi using a two-generation exposure regime. Survival and emergence of C.

View Article and Find Full Text PDF

Effect-based methods (EBM) have great potential for water quality monitoring as they can detect the mixture effects of all active known and unknown chemicals in a sample, which cannot be addressed by chemical analysis alone. To date, EBM have primarily been applied in a research context, with a lower level of uptake by the water sector and regulators. This is partly due to concerns regarding the reliability and interpretation of EBM.

View Article and Find Full Text PDF

Microplastics come in a variety of shapes, polymer types and sizes. Due to the lack of a harmonised approach to analyse and quantify microplastics, there are huge disparities in size detection limits and size classifications used in the literature. This has caused large variations in reported microplastic data and has made comparing microplastic abundance between studies extremely challenging.

View Article and Find Full Text PDF

Water safety plans (WSPs) are intended to assure safe drinking water (DW). WSPs involve assessing and managing risks associated with microbial, chemical, physical and radiological hazards from the catchment to the consumer. Currently, chemical hazards in WSPs are assessed by targeted chemical analysis, but this approach fails to account for the mixture effects of the many chemicals potentially present in water supplies and omits the possible effects of non-targeted chemicals.

View Article and Find Full Text PDF

Effect-based methods (EBMs) using in vitro bioassays and well plate-based in vivo assays are recommended for water quality monitoring because they can capture the mixture effects of the many chemicals present in water. Many in vitro bioassays are highly sensitive, so an effect in a bioassay does not necessarily indicate poor chemical water quality. Consequently, effect-based trigger values (EBTs) have been introduced to differentiate between acceptable and unacceptable chemical water quality and are required for the wider acceptance of EBMs by the water sector and regulatory bodies.

View Article and Find Full Text PDF

Wastewater and stormwater are both considered as critical pathways contributing microplastics (MPs) to the aquatic environment. However, there is little information in the literature about the potential influence of constructed wetlands (CWs), a commonly used wastewater and stormwater treatment system. This study was conducted to investigate the abundance and distribution of MPs in water and sediment at five CWs with different influent sources, namely stormwater and wastewater.

View Article and Find Full Text PDF

This work examined the chiral inversion of 2-arylpropionic acids (2-APAs) under anaerobic conditions and the associated microbial community. The anaerobic condition was simulated by two identical anaerobic digesters. Each digester was fed with the substrate containing 11 either pure ()- or pure ()-2-APA enantiomers.

View Article and Find Full Text PDF

This study examined the removal and enantio‑specific fate of a suite of eleven chiral 2-arylpropionic acids (2-APAs) during biological wastewater treatment simulated in a laboratory-scale membrane bioreactor (MBR). Using pure (R)- and (S)- enantiomers in the MBR influent, chiral inversion was determined through the increase in the concentration of the non-dominant enantiomer and changes in the enantiomeric fraction (EF) between the two enantiomers during the treatment process. Effective (>90%) and similar removal rates between (R)- and (S)- enantiomers were confirmed for eight 2-APAs.

View Article and Find Full Text PDF

Restoring woody vegetation to riparian zones helps to protect waterways from excessive sediment and nutrient inputs. However, the associated leaf litter can be a major source of dissolved organic matter (DOM) leached into surface waters. DOM can lead to the formation of disinfection by-products (DBPs) during drinking water treatment.

View Article and Find Full Text PDF

Wastewater treatment plants (WWTPs) have been identified as an important pathway of microplastics to the environment. Most studies have focused on wastewater effluent, but generally only a small fraction of microplastics entering WWTPs are present in treated effluent. Instead, the majority of microplastics are expected to be retained in the sludge.

View Article and Find Full Text PDF

Effect-based trigger (EBT) values for in vitro bioassays are important for surface water quality monitoring because they define the threshold between acceptable and poor water quality. They have been derived for highly specific bioassays, such as hormone-receptor activation in reporter gene bioassays, by reading across from existing chemical guideline values. This read-across method is not easily applicable to bioassays indicative of adaptive stress responses, which are triggered by many different chemicals, and activation of nuclear receptors for xenobiotic metabolism, to which many chemicals bind with rather low specificity.

View Article and Find Full Text PDF

Bioassays show promise as a complementary approach to chemical analysis to assess the efficacy of wastewater treatment processes as they can detect the mixture effects of all bioactive chemicals in a sample. We investigated the treatment efficacy of ten Australian wastewater treatment plants (WWTPs) covering 42% of the national population over seven consecutive days. Solid-phase extracts of influent and effluent were subjected to an test battery with six bioassays covering nine endpoints that captured the major modes of action detected in receiving surface waters.

View Article and Find Full Text PDF

Pharmaceuticals, which are designed to be biologically active at low concentrations, are found in surface waters, meaning aquatic organisms can be exposed to complex mixtures of pharmaceuticals. In this study, the adverse effects of four pharmaceuticals, 17α-ethynylestradiol (synthetic estrogen), methotrexate (anticancer drug), diclofenac (nonsteroidal anti-inflammatory drug) and fluoxetine (antidepressant), and their binary mixtures at mg/L concentrations were assessed using the 7-day Lemna minor test, with both apical and biochemical markers evaluated. The studied biochemical markers included chlorophyll a, chlorophyll b, carotenoids and oxidative stress enzymes catalase, glutathione-S-transferase and glutathione reductase, with effects compared to solvent controls.

View Article and Find Full Text PDF
Article Synopsis
  • Major rivers in India are heavily impacted by urban drainage systems that release high levels of wastewater from homes and industries.
  • This study analyzed bioactive organic micropollutants in water samples from urban drain discharge points and upstream/downstream locations using bioanalytical methods.
  • Results showed significant pollution at discharge points, with estrogenic activity comparable to harmful levels found in aquatic life, highlighting the need for better management of urban drainage and water quality assessment techniques.
View Article and Find Full Text PDF

In vitro bioassays are increasingly applied to detect endocrine disrupting chemicals (EDCs) in environmental waters. Most studies use human nuclear receptor assays, but this raises questions about their relevance for evaluating ecosystem health. The current study aimed to assess species-specific differences in the activation or inhibition of a range of human and zebrafish nuclear receptors by different water extracts.

View Article and Find Full Text PDF

Rain events may impact the chemical pollution burden in rivers. Forty-four small streams in Germany were profiled during several rain events for the presence of 395 chemicals and five types of mixture effects in bioassays (cytotoxicity; activation of the estrogen, aryl hydrocarbon, and peroxisome proliferator-activated receptors; and oxidative stress response). While these streams were selected to cover a wide range of agricultural impacts, in addition to the expected pesticides, wastewater-derived chemicals and chemicals typical for street runoff were detected.

View Article and Find Full Text PDF
Article Synopsis
  • The Great Barrier Reef's water quality is affected by pollution from farms, especially things like sediment, nutrients, and pesticides.
  • There are also new kinds of pollution called contaminants of emerging concern (CECs) that are coming from farms and cities, which could harm marine life.
  • The study highlights the need for better monitoring of these CECs and suggests collecting more data to understand their impact on the environment.
View Article and Find Full Text PDF

Small and brief exceedances of chemicals above their guideline values in drinking water are unlikely to cause an appreciable increased risk to human health. As a result, short-term exposure values (STEV) can be derived to help decide whether drinking water can still be supplied to consumers without adverse health risks. In this study, three approaches were applied to calculate and compare STEV for pesticides.

View Article and Find Full Text PDF