Publications by authors named "Pesse B"

Objective: Unpredictable pharmacokinetics of antibiotics in patients with life-threatening bacterial infections is associated with drug under- or overdosing. Therapeutic drug monitoring (TDM) may guide dosing adjustment aimed at maximizing antibacterial efficacy and minimizing toxicity. Rapid and accurate analytical methods are key for real-time TDM.

View Article and Find Full Text PDF

Background And Objectives: Autologous haematopoietic progenitor cell (HPC) is a prerequisite for high-dose chemotherapy in treatment of several haematologic and non-haematologic malignancies. HPCs are collected by apheresis and cryopreserved until infusion. Postinfusion adverse events have been in part related to the dimethyl sulphoxide (DMSO) used as cryoprotectant.

View Article and Find Full Text PDF

Rationale: The aim of the work was to develop and validate a method for the quantification of vitamin D metabolites in serum using ultra-high-pressure liquid chromatography coupled to mass spectrometry (LC/MS), and to validate a high-resolution mass spectrometry (LC/HRMS) approach against a tandem mass spectrometry (LC/MS/MS) approach using a large clinical sample set.

Methods: A fast, accurate and reliable method for the quantification of the vitamin D metabolites, 25-hydroxyvitamin D2 (25OH-D2) and 25-hydroxyvitamin D3 (25OH-D3), in human serum was developed and validated. The C3 epimer of 25OH-D3 (3-epi-25OH-D3) was also separated from 25OH-D3.

View Article and Find Full Text PDF

Posaconazole (POS) is a new antifungal agent for prevention and therapy of mycoses in immunocompromised patients. Variable POS pharmacokinetics after oral dosing may influence efficacy: a trough threshold of 0.5 μg/ml has been recently proposed.

View Article and Find Full Text PDF

Therapeutic drug monitoring (TDM) may contribute to optimizing the efficacy and safety of antifungal therapy because of the large variability in drug pharmacokinetics. Rapid, sensitive, and selective laboratory methods are needed for efficient TDM. Quantification of several antifungals in a single analytical run may best fulfill these requirements.

View Article and Find Full Text PDF

Besides affecting the systemic bioavailability of the parent drug, drug metabolizing enzymes (DMEs) may produce bioactive and/or toxic metabolites of clinical interest. We have investigated the capability to analyze simultaneously the parent drug and newly identified metabolites in patients' plasma by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The anticancer drug, imatinib, was chosen as a model drug because it has opened a new area in cancer therapy and is given orally and chronically.

View Article and Find Full Text PDF

Homocysteine (HCY) is toxic on blood vessels, but a potential direct toxicity of HCY on the heart is unknown. We addressed this issue by exposing H9C2 cardiomyocytes to HCY (0.1-5 mM) for up to 6h.

View Article and Find Full Text PDF

Recent evidence indicates that peroxynitrite represents a major cytotoxic effector in heart diseases, but its mechanisms of action are still not known exactly. Notably, the ability of peroxynitrite to trigger cardiomyocyte apoptosis, a crucial mode of cell death in many cardiac conditions, remains poorly defined. We evaluated apoptotic and necrotic cell death in cultured H9C2 cardiomyocytes, following a brief (20 min) exposure to peroxynitrite (50-500 microM).

View Article and Find Full Text PDF

Peroxynitrite is a potent oxidant and nitrating species proposed as a direct effector of myocardial damage in numerous cardiac pathologies. Whether peroxynitrite also acts indirectly, by modulating cell signal transduction in the myocardium, has not been investigated. Therefore, we examined a possible role for peroxynitrite on the activation of NF-kappaB, a crucial pro-inflammatory transcription factor, in cultured H9C2 cardiomyocytes.

View Article and Find Full Text PDF

Peroxynitrite is a potent oxidant and nitrating species proposed as a direct effector of myocardial damage in a wide range of cardiac diseases. Whether peroxynitrite also acts indirectly, by modulating cell signal transduction pathways in the myocardium, has not been investigated. Here, we examined the ability of peroxynitrite to activate extracellular signal-related kinase (ERK), a MAP kinase which has been linked with hypertrophic and anti-apoptotic responses in the heart, in cultured H9C2 cardiomyocytes.

View Article and Find Full Text PDF