Publications by authors named "Peskov N"

In this paper, we studied the operability of various components of vacuum electronic devices manufactured using the novel chemical metallization of photopolymer 3D-printed structures technology (CMPS), which is being applied at the Institute of Applied Physics, Russian Academy of Sciences (IAP RAS), for operation from microwave to sub-terahertz ranges. The key feature of this production method is the 3D printing (SLA/DLP, MJM technologies) of products and their further metallization. The paper presents the main stages of the process of chemical copper plating of polymer bases in various electrodynamic systems with complex shapes.

View Article and Find Full Text PDF

A spatially extended planar 75 GHz free-electron maser with a hybrid two-mirror resonator consisting of two-dimensional upstream and traditional one-dimensional downstream Bragg reflectors and driven by two parallel-sheet electron beams 0.8  MeV/1  kA has been elaborated. For the highly oversized interaction space (cross section 45×2.

View Article and Find Full Text PDF

The first operation of a coaxial free-electron maser (FEM) based on two-dimensional (2D) distributed feedback has been recently observed. Analytical and numerical modeling, as well as measurements, of microwave radiation generated by a FEM with a cavity defined by coaxial structures with a 2D periodic perturbation on the inner surfaces of the outer conductor were carried out. The two-mirror cavity was formed with two 2D periodic structures separated by a central smooth section of coaxial waveguide.

View Article and Find Full Text PDF

Experimental results of the observation of coherent stimulated radiation from subnanosecond electron bunches moving through a periodic waveguide and interacting with a backward propagating wave are presented. The subnanosecond microwave pulses in Ka and W bands were generated with repetition frequencies of up to 25 Hz. The mechanism of microwave pulse generation was associated with self-bunching, and the mutual influence of different parts of the electron pulse due to slippage of the wave with respect to the electrons; this can be interpreted as superradiance.

View Article and Find Full Text PDF

The use of two-dimensional Bragg resonators of planar geometry, realizing two-dimensional (2D) distributed feedback, is considered as a method of producing spatially coherent radiation from a large sheet electron beam. The spectrum of eigenmodes is found for a 2D Bragg resonator when the sides of the resonator are open and also when they are closed. The higher selectivity of the open resonator in comparison with the closed one is shown.

View Article and Find Full Text PDF

For the oscillating oxidation of CO on a zeolite-supported palladium catalyst the transition to chaos could be observed in a very narrow region of the CO concentration in the feed. The reaction was carried out under the conditions of a continuous stirred tank reactor. A careful choice of the method for time series analysis led to the unambiguous identification of the intermittency-I route to chaos in the catalytic system despite the rather limited number of data points which can be acquired under normal pressure conditions.

View Article and Find Full Text PDF

A new type of high-selective Bragg resonator having a step of corrugation inside the interaction region was used as a microwave system for a free-electron maser (FEM). Using a LINAC LIU-3000 (1 MeV/200 A/200 ns) to drive the FEM oscillator, a single-mode single-frequency operation was achieved at a frequency of 30.74 GHz with an output power of about 50 MW, which corresponded to a record efficiency of 35% for a millimeter wavelength FEM.

View Article and Find Full Text PDF