Publications by authors named "Peshkovsky A"

The use of Δ-tetrahydrocannabinol (Δ-THC) has increased in recent years. Given that the oral absorption of cannabinoids in oil formulations is typically slow and variable, nanoemulsions may be an improved delivery vehicle. Therefore, we characterized the pharmacokinetics (PK) in Sprague-Dawley rats following the administration of three different oral formulations containing 10 mg/kg Δ-THC: a translucent liquid nanoemulsion, a reconstituted powder nanoemulsion, and a medium chain triglyceride (MCT) oil solution for comparison.

View Article and Find Full Text PDF

A planar nuclear quadrupole resonance (NQR) sensor has been developed. The sensor is resilient to environmental noise and is capable of simultaneous independent multi-frequency operation. The device was constructed as an open multimodal birdcage structure, in which the higher modes, generally not used in magnetic resonance, are utilized for NQR detection.

View Article and Find Full Text PDF

Shock-wave model of liquid cavitation due to an acoustic wave was developed, showing how the primary energy of an acoustic radiator is absorbed in the cavitation region owing to the formation of spherical shock-waves inside each gas bubble. The model is based on the concept of a hypothetical spatial wave moving through the cavitation region. It permits using the classical system of Rankine-Hugoniot equations to calculate the total energy absorbed in the cavitation region.

View Article and Find Full Text PDF

Purpose: To demonstrate the feasibility of high-field SENSE imaging of large objects, such as the human head, using a semicircular (half-volume) coil for both transmission and multi-channel reception.

Materials And Methods: As a proof of concept, we present experimental data obtained using a seven-element half-volume (180 degrees of arc) transmit/receive quadrature transverse electromagnetic (TEM) coil. SENSE images of the human brain were acquired with a reduction factor of R=2, using two degenerate linear modes of the same coil as independent receive channels at 4T.

View Article and Find Full Text PDF

High-power ultrasound for several decades has been an integral part of many industrial processes conducted in aqueous solutions. Maximizing the transfer efficiency of the acoustic energy between electromechanical transducers and water at cavitation is crucial when designing industrial ultrasonic reactors with large active volumes. This can be achieved by matching the acoustic impedances of transducers to water at cavitation using appropriately designed ultrasonic horns.

View Article and Find Full Text PDF

A birdcage coil capable of operating simultaneously and independently in three orthogonal dimensions has been developed. A co-rotational end-ring mode producing an RF field in the longitudinal direction was utilized in addition to the two common transverse orthogonal modes. Two conductor turns were used for each of the coil's windows, increasing its inductance by a factor of four, thereby, making the coil suitable for low-frequency applications.

View Article and Find Full Text PDF

An actively detunable planar quadrature surface coil for human body imaging at 4 T has been constructed and compared with a conventional linear surface coil. The coil could be used as a transmit/receive or a receive-only device in combination with a volume transmit coil. Transmission, reception profiles and the corresponding images acquired with each coil, as well as with both individual modes of the quadrature coil, are presented.

View Article and Find Full Text PDF

A simple Q-damper device for active probe recovery time reduction is introduced along with a straightforward technique for the circuit's component value optimization. The device is inductively coupled to a probe through a coupling transformer positioned away from the main coil, which makes the design independent of the coil type being used. The Q-damper is a tuned circuit, which is resonant at the same frequency as the probe and can be actively interrupted.

View Article and Find Full Text PDF

A half-volume quadrature head transverse electromagnetic (TEM) coil has been constructed for 4 T imaging applications. This coil produces a sufficiently large homogeneous B(1) field region for the use as a volume coil. It provides superior transmission efficiency, resulting in significantly lower power deposition, as well as greater sensitivity and improved patient comfort and accessibility compared with conventional full-volume coils.

View Article and Find Full Text PDF

Motion during MRI examinations is a serious problem that degrades the quality of the data (images) acquired. Motion can be corrected during the postprocessing of the data; however, this approach is suboptimal and is typically limited to in-plane or translational motion. An apparatus for dynamic angular position tracking (ADAPT) for prospective angular motion correction has been developed.

View Article and Find Full Text PDF

We observed magnetization transfer and spectroscopic splittings due to dipolar couplings in the solution NMR spectra of neat nitrobenzene aligned using AC electric fields. Weak dipolar splittings have been previously observed for nitrobenzene in a DC electric field (T. M.

View Article and Find Full Text PDF