Publications by authors named "Peshkin M"

Article Synopsis
  • The ability to create realistic texture perception through haptic devices has been a challenge, mainly focusing on how we perceive roughness via skin mechanoreceptors.
  • Existing models for predicting texture perception are limited to normal stimuli and do not account for important factors like lateral shear forces or dispersed actuator configurations that can enhance the perception of roughness.
  • A new predictive model developed in this study successfully forecasts perceived roughness based on various external stimuli and has been validated with experimental results, highlighting the importance of strain variation and lateral shear forces for accurate texture sensation.
View Article and Find Full Text PDF

As the number of applications for tactile feedback technology rapidly increases, so too does the need for efficient, flexible, and extensible representations of virtual textures. The previously introduced Single-Pitch Texel rendering algorithm offers designers the ability to produce textures with perceptually wide-band spectral characteristics while requiring very few input parameters. This paper expands on the capabilities of the rendering algorithm.

View Article and Find Full Text PDF

We present PixeLite, a novel haptic device that produces distributed lateral forces on the fingerpad. PixeLite is 0.15 mm thick, weighs 1.

View Article and Find Full Text PDF

This paper introduces a novel rendering algorithm for virtual textures, specifically those with characteristic length scales below 1 mm. By leveraging the relatively lossy mode of human tactile perception at this length scale, a virtual texture with wide-band spectral characteristics can be reduced to a spatial sequence of single-frequency texels, where each frequency is pulled stochastically from a distribution. A psychophysical study was conducted to demonstrate that, below a limiting physical texel length, virtual textures defined by identical frequency distributions are perceptually indiscriminable.

View Article and Find Full Text PDF

Friction modulation technology enables the creation of textural effects on flat haptic displays. However, an intuitive and manageably small design space for construction of such haptic textures remains an unfulfilled goal for user interface designers. In this paper, we explore perceptually relevant features of fine texture for use in texture construction and modification.

View Article and Find Full Text PDF

This article seeks to understand conditions under which virtual gratings produced via vibrotaction and friction modulation are perceived as similar and to find physical origins in the results. To accomplish this, we developed two single-axis devices, one based on electroadhesion and one based on out-of-plane vibration. The two devices had identical touch surfaces, and the vibrotactile device used a novel closed-loop controller to achieve precise control of out-of-plane plate displacement under varying load conditions across a wide ranget of frequencies.

View Article and Find Full Text PDF

One well-known class of surface haptic devices that we have called Tactile Pattern Displays (TPaDs) uses ultrasonic transverse vibrations of a touch surface to modulate fingertip friction. This article addresses the power consumption of glass TPaDs, which is an important consideration in the context of mobile touchscreens. In particular, based on existing ultrasonic friction reduction models, we consider how the mechanical properties (density and Young's modulus) and thickness of commonly-used glass formulations affect TPaD performance, namely the relation between its friction reduction ability and its real power consumption.

View Article and Find Full Text PDF

We propose a new lateral force feedback device, the UltraShiver, which employs a combination of in-plane ultrasonic oscillation (around 30 kHz) and out-of-plane electroadhesion. It can achieve a strong active lateral force (400 mN) on the bare fingertip while operating silently. The lateral force is a function of pressing force, lateral vibration velocity, and electroadhesive voltage, as well as the relative phase between the velocity and voltage.

View Article and Find Full Text PDF

As a neutron scatters from a target nucleus, there is a small but measurable effect caused by the interaction of the neutron's magnetic dipole moment with that of the partially screened electric field of the nucleus. This spin-orbit interaction is typically referred to as Schwinger scattering and induces a small rotation of the neutron's spin on the order of 10 rad for Bragg diffraction from silicon. In our experiment, neutrons undergo greater than 100 successive Bragg reflections from the walls of a slotted, perfect-silicon crystal to amplify the total spin rotation.

View Article and Find Full Text PDF

We report an electroadhesive approach to controlling friction forces on sliding fingertips which is capable of producing vibrations across an exceedingly broad range of tactile, audible, and ultrasonic frequencies. Vibrations on the skin can be felt directly, and vibrations in the air can be heard emanating from the finger. Additionally, we report evidence from an investigation of the electrical dynamics of the system suggesting that an air gap at the skin/surface interface is primarily responsible for the induced electrostatic attraction underlying the electroadhesion effect.

View Article and Find Full Text PDF

Active electrosense is a non-visual, short range sensing system used by weakly electric fish, enabling such fish to locate and identify objects in total darkness. Here we report initial findings from the use of active electrosense for object localization during underwater teleoperation with a virtual reality (VR) head-mounted display (HMD). The advantage of electrolocating with a VR system is that it naturally allows for aspects of the task that are difficult for a person to perform to be allocated to the computer.

View Article and Find Full Text PDF

We describe a new haptic force feedback device capable of creating lateral shear force on a bare fingertip-the eShiver. The eShiver creates a net lateral force from in-plane oscillatory motion of a surface synchronized with a "friction switch" based on Johnsen-Rahbek electroadhesion. Using an artificial finger, a maximum net lateral force of ±300 mN is achieved at 55 Hz lateral oscillation frequency, and net force is shown to be a function of velocity and applied voltage, as well as the phase between them.

View Article and Find Full Text PDF

Weakly electric fish emit an AC electric field into the water and use thousands of sensors on the skin to detect field perturbations due to surrounding objects. The fish's active electrosensory system allows them to navigate and hunt, using separate neural pathways and receptors for resistive and capacitive perturbations. We have previously developed a sensing method inspired by the weakly electric fish to detect resistive perturbations and now report on an extension of this system to detect capacitive perturbations as well.

View Article and Find Full Text PDF

The Gestalt theory of perception offered principles by which distributed visual sensations are combined into a structured experience ("Gestalt"). We demonstrate conditions whereby haptic sensations at two fingertips are integrated in the perception of a single object. When virtual bumps were presented simultaneously to the right hand's thumb and index finger during lateral arm movements, participants reported perceiving a single bump.

View Article and Find Full Text PDF

When multiple fingertips experience force sensations, how does the brain interpret the combined sensation? In particular, under what conditions are the sensations perceived as separate or, alternatively, as an integrated whole? In this work, we used a custom force-feedback device to display force signals to two fingertips (index finger and thumb) as they traveled along collinear paths. Each finger experienced a pattern of forces that, taken individually, produced illusory virtual bumps, and subjects reported whether they felt zero, one, or two bumps. We varied the spatial separation between these bump-like force-feedback regions, from being much greater than the finger span to nearly exactly the finger span.

View Article and Find Full Text PDF

Haptic interfaces controlled by a single fingertip or hand-held probe tend to display surface features individually, requiring serial search for multiple features. Novel surface haptic devices, however, have the potential to provide displays to multiple fingertips simultaneously, affording the possibility of parallel search. Using variable-friction surface haptic devices, we investigated the ability of participants to detect a target feature among a set of distractors in parallel across the fingers.

View Article and Find Full Text PDF

The mechanical properties of human joints (i.e., impedance) are constantly modulated to precisely govern human interaction with the environment.

View Article and Find Full Text PDF

A new method of lower-limb exoskeleton control aimed at improving the agility of leg-swing motion is presented. In the absence of control, an exoskeleton's mechanism usually hinders agility by adding mechanical impedance to the legs. The uncompensated inertia of the exoskeleton will reduce the natural frequency of leg swing, probably leading to lower step frequency during walking as well as increased metabolic energy consumption.

View Article and Find Full Text PDF

In order to provide natural, biomimetic control to recently developed powered ankle prostheses, we must characterize the impedance of the ankle during ambulation tasks. To this end, a platform robot was developed that can apply an angular perturbation to the ankle during ambulation and simultaneously acquire ground reaction force data. In this study, we detail the design of the platform robot and characterize the impedance of the ankle during quiet standing.

View Article and Find Full Text PDF

Many of the current implementations of exoskeletons for the lower extremities are conceived to either augment the user's load-carrying capabilities or reduce muscle activation during walking. Comparatively little research has been conducted on enabling an exoskeleton to increase the agility of lower-limb movements. One obstacle in this regard is the inertia of the exoskeleton's mechanism, which tends to reduce the natural frequency of the human limbs.

View Article and Find Full Text PDF

Existing prosthetic limbs do not provide amputees with cutaneous feedback. Tactile feedback is essential to intuitive control of a prosthetic limb and it is now clear that the sense of body self-identification is also linked to cutaneous touch. Here we have created an artificial sense of touch for a prosthetic limb by coupling a pressure sensor on the hand through a robotic stimulator to surgically redirected cutaneous sensory nerves (targeted reinnervation) that once served the lost limb.

View Article and Find Full Text PDF

The lack of proprioceptive feedback is a serious deficiency of current prosthetic control systems. The Osseo-Magnetic Link (OML) is a novel humeral or wrist rotation control system that could preserve proprioception. It utilizes a magnet implanted within the residual bone and sensors mounted in the prosthetic socket to detect magnetic field vectors and determine the bone's orientation.

View Article and Find Full Text PDF

Background And Purpose: Stiff-knee gait is defined as reduced knee flexion during the swing phase. It is accompanied by frontal plane compensatory movements (eg, circumduction and hip hiking) typically thought to result from reduced toe clearance. As such, we examined if knee flexion assistance before foot-off would reduce exaggerated frontal plane movements in people with stiff-knee gait after stroke.

View Article and Find Full Text PDF

We discuss the design and performance of a new haptic surface capable of controlling shear force on a bare finger. At the heart of the ShiverPaD is the TPaD variable friction device. It modulates the friction of a glass surface by using 39 kHz out-of-plane vibrations to reduce friction.

View Article and Find Full Text PDF

Many of those who survive a stroke develop a gait disability known as stiff-knee gait (SKG). Characterized by reduced knee flexion angle during swing, people with SKG walk with poor energy efficiency and asymmetry due to the compensatory mechanisms required to clear the foot. Previous modeling studies have shown that knee flexion activity directly before the foot leaves the ground, and this should result in improved knee flexion angle during swing.

View Article and Find Full Text PDF